
Suresh Gyan Vihar University Journal of Engineering & Technology

 (An International Bi‐Annual Journal)
 Vol . 1, Issue 2, 2015,pp.22-26

 ISSN: 2395‐0196

22

An Integrated Approach of Data Security on Server via

Stegnography using 4 bit LSB
Udit Yadav1, Akhilesh Pandey2

1Research. Scholar, Suresh Gyan Vihar University, Jaipur
2Asst. Professor, Computer Science & Engineering, Suresh Gyan Vihar University, Jaipur

Abstract – In this article the implementation and analysis of image steganographic process is carried out

to secure the data on a network. LSB encoding technique is utilized to hide the data in the LSB of 24 bit

RGB pixels of colored cover image. The intermediate cover image containing the data (stegano image)

shows a good correlation with the original cover image meaning a good amount of hiding of data. If the

size of the data file to be sent is more than the capacity of the cover image then multiple copies of cover

image are used to embed the data. The correlation of recovered data file with the original data file comes

out to be 1 meaning a perfect recovery.

Keywords: LSB, Steganographic, RGB, Data Security

I. INTRODUCTION

In recent times, the significance of ensuring the network data

integrity has been highlighted by the following research works

[1–5]. These techniques, while can be useful to ensure the

storage correctness without having users possessing data,

cannot address all the security threats in network data storage,

since they are all focusing on single server scenario and most

of them do not consider dynamic data operations. As a

complementary approach, researchers have also proposed

distributed protocols [6–8] for ensuring storage correctness

across multiple servers or peers. Again, none of these

distributed schemes is aware of dynamic data operations. As a

result, their applicability in network data storage can be

drastically limited. Steganography is the art and science of

writing hidden messages in such a way that no one apart from

the intended recipient knows of the existence of the message

[9]. Due to growing need for security of data image

steganography is gaining popularity [10]. The main goal of

steganography is to communicate securely in a completely

undetectable manner [11] and to avoid drawing suspicion to

the transmission of a hidden data [12]. This idea of data hiding

is not a novelty, it has been used for centuries all across the

world under different regimes but to date it is still unknown to

most people – is a tool for hiding information so that it does

not even appear to exist. However Steganography operates at a

more complex level as detection is dependent on recognizing

the underlying hidden data. In the presented text the

implementation and analysis of image steganographic process

is carried out to secure the data on network. LSB encoding

technique is utilized to hide the data in the LSB of 24 bit RGB

pixels of colored cover image. The intermediate cover image

containing the data (stegano image) shows a good correlation

with the original cover image meaning a good amount of

hiding of data. If the size of the data file to be sent is more

than the capacity of the cover image then multiple copies of

cover image are used to embed the data. The correlation of

recovered data file with the original data file comes out to be

1, meaning a perfect recovery.

Steganography and encryption are both used to make sure data

prudence. However the main discrimination among them is

that with encryption any person can see that both parties are

communicating in secret. Steganography hides the

continuation of a clandestine communication and in the best

case nobody can see that both parties are communicating in

secret. This makes steganography appropriate for a number of

responsibilities for which encryption isn’t, such as copyright

marking. Adding together encrypted copyright information to

a file could be easy to eliminate but embedding it inside the

stuffing of the file itself can avoid it being simply recognized

and disinterested.

II. LSB TECHNIQUE FOR HIDING THE DATA

The least significant bit (in other words, the 8th bit) of

some or all of the bytes inside an image is changed to a bit of

the secret message. Digital images are mainly of two types (i)

24 bit images and (ii) 8 bit images. In 24 bit images we can

embed three bits of information in each pixel, one in each LSB

position of the three eight bit values for example:

Let us consider a data byte 1 0 1 1 0 1 0 1

 Udit Yadav et al. SGVU J Engg. & Techno., Vol. 1, Issue 2, pp.22-26

23

Let the RGB component of 3 pixels read from cover image be:

The RGB component of these 3 pixels in the stegano image

shall be:

Bits marked red are the bits from data byte (most significant

bit to least significant bit) read. Here blue component of every

third pixel remains unchanged. In this case, only four bits

needed to be changed to insert the character successfully. The

resulting changes that are made to the least significant bits are

too small to be recognized by the human eye, so the message

is effectively hidden. An automated system is designed to

upload and download the data to network and from the

network, the flow charts for the uploading the data and

downloading the data are demonstrated in the Fig.1 and Fig.2

below

a) Encoding Process :

Fig.1 Flowchart of data up load on network

b) Decoding Process:

c) Data Extraction

d) The extraction process is as follows.

e) Inputs : Stego-image file, stego-key

f) Output: Secret message.

START

LOGIN USING USER CREDENTIALS

SUCCESSFUL
LOGIN

SELECT FILE TO BE DOWNLOADED FROM THE FILES UPLOADED EARLIER BY
USER

DATA FILE SELECTED BY USER IS EXTRACTED FROM THE STEGNO IMAGE(S)
CREATED AT THE TIME WHEN DATA FILE WAS UPLOADED. DATA FILE IS RE-

CREATED AS THE ORIGINAL AND DOWNLOADED TO USER’S SYSTEM

STOP

yes

no

Fig.2 Flowchart of data down load on network

Procedure:

 Step 1: Extract the pixels of the stego image.

 Step 2: Now, start from first pixel and extract stego

key characters from first component of the pixels.

Follow Step3 up to terminating symbol, otherwise

follow step 4.

 Step 4: If this extracted key matches with the key

entered by the receiver, then follow Step 5, otherwise

terminate the program.

 Step 5: If the key is correct, then go to next pixels

and extract secret message characters from first

component of next pixels. Follow Step 5 till up to

terminating symbol, otherwise follow step 6.

 Step 6: Extract secret message [18, 20].

Decryptions (Size_data_file, Number_file)

// Here Size_data_file is original size of the data file,

Number_file is the number of Stegno-images created while

encryption.

 Step 1. Initialize byte_array[Size_data_file],

byte_index = 0

II. ALGORITHM

//Initialize byte_array [] of bytes equal to number of bytes in

the original data file.

 Step 2. For i = 1 to Number_file step by 1 Loop

 Step 3. Retrieve Stegno_image(i)

 Udit Yadav et al. SGVU J Engg. & Techno., Vol. 1, Issue 2, pp.22-26

24

//Read ith Stegno_image

 Step 4. Initialize bit_array[8], bit_position = 0

//Array to be used for calculating each byte of the data file

 Step 5. For x=0 to Stegno_image(i).Width-1 step by

1Loop

 Step 6. For y=0 to Stegno_image(i).Height -1 step

by 1 Loop

 Step7. Read pixel_color = Stegno_image(i).Pixel(x,

y)

//Read value of Pixel(x,y) into color_pixel

 Step 8. Set red_array = pixel_color.Red

//Retrieve the Red component for color_pixel as a 8-bit array

(range 0 -255)

 Set green_array = pixel_color.Green

//Retrieve the Green component for color_pixel as a 8-bit

array (range 0 -255)

 Set blue_array = pixel_color.Blue

//Retrieve the Blue component for color_pixel as a 8-bit array

(range 0 -255)

 Step 9. Set bit_array[bit_potision++] = red_array[7]

//Set bit_array[bit_position] to LSB of blue component of

pixel, and increment bit_position by 1

Set bit_array[bit_potision++] = green_array[7]

//Set bit_array[bit_position] to LSB of blue component of

pixel, and increment bit_position by 1

If bit_potision < 8 then

Set bit_array[bit_potision++] =

blue_array[7]

//Set bit_array[bit_position] to LSB of blue component of

pixel, and increment bit_position by 1

 Else

 bit_potision = 0;

//Reset bit_position

 byte_array[byte_index++] = bit_array

//transfer bit_array to byte_array at position byte_index and

increment byte_index by 1

 End If

 Step 10. End Loop (y)

 Step 11. End Loop (x)

 End 12. If byte_index = Size_data_file then

 Write byte_array[] as data file

//Save byte_array[] as data file.

Step 13. Exit

The algorithm used can be summarized as like we consider a

cover image Image_1 of size 120*140, i.e. width of image is

120 pixels and height is 140 pixels, and a data file data.txt of

size 200KB. Here total number of pixels in the image = 120 *

140 = 16800. In every pixel 3-bits of data can be embedded,

one bit at least significant bit of RGB component of pixel, so

total data bits that can be embedded in the cover image =

16800 * 3 = 50400 bits or 6300 bytes.

Total byte of the data file = 200 * 1024 = 204800

Here number of bytes in the data file is greater than byte

that can be accommodated in the cover image. Thus we need

multiple copies of the cover image to embed the data file,

number of Ceiling (204800 / 6300) = 33. So 33 copies of

cover image will be created rather denying the client as size of

data file is larger than the number of bytes that can be

accommodated in the cover image.

Now the data file will also be broken down in 33 small

chunks by the process, where first 32 chunks will of size 6300

bytes each and last chunk will be of 3200 bytes (204800 –

6300 * 32). Now iterative process will be called to embed

every bit of data file into the 33 copies of the cover image to

generate the stegno images which shall then be uploaded over

the network.

 In such way the files having a large size can also be

uploaded by parts practically having no limit over the data size

to be uploaded. The Fig 3 below shows the process in a

sequential manner. The complete process can be summarized

as follows:

Fig.3 The process of image steganography

In this article an example is taken in which a text data

file is hidden in an image. The text file is having a larger size

then the capacity of the cover image so multiple copies of the

cover image are created to hide the complete data.

III. ANALYSIS OF THE DESIGNED SYSTEM

In this section an example is taken in which a text data file is

hidden in an image. The text file is having a larger size then

the capacity of the cover image so multiple copies of the cover

 Udit Yadav et al. SGVU J Engg. & Techno., Vol. 1, Issue 2, pp.22-26

25

image are created to hide the complete data. The difference

images and stegano images at each and every step are

analyzed. The data matrices of each image are produced in

order to justify the process results and the graphs are drawn

for each image RGB components. The correlation between

each stegano image is calculated. The text file size used is

having a size of 592 bytes. The cover image taken is having

3x15x21= 945 pixels. To hide one byte of data 9 (3 RGB

Pixels) pixels are required so the given image can handle 945/

9 = 105 bytes of data. According to the capacity of the cover

image six replicas of cover image are needed to encrypt the

complete date. Six Stegano images will be produced to hide

the complete data.

The Stegano image 1 produced is shown in Fig. 5.2 (a). It is

the enlarged copy of the actual Stegano image produced. The

difference image is also created by taking the difference of the

cover image and the Stegano 1 image. The difference image is

almost black showing no significant difference in the pixel

values of the cover image. This makes the hiding of the data at

a good level.

(a) (b)

Fig. 4 (a) Stegano Image 1 (b) Difference from cover

image

Here to estimate the similarity of the cover image with the

stegano image the correlation of the RGB component is taken

with respective components of each stegano image and the

results of the correlation are summarized below: Correlation

Coefficient shows amount of similarity between two matrices.

Here the calculated value Correlation Coefficients of stegano-

images with respect to Cover Image are:

Table 1. Correlation Coefficients Of All Image Components

corr2(R, R1) = 1

corr2(G, G1) = 1

corr2(B, B1) = 1

corr2(R, R2) = 1

corr2(G, G2) = 1

corr2(B, B2) = 1

corr2(R, R3) = 1

corr2(G, G3) = 1

corr2(B, B3) = 1

corr2(R, R4) = 1

corr2(G, G4) = 1

corr2(B, B4) = 1

corr2(R, R5) = 1

corr2(G, G5) = 1

corr2(B, B5) = 1

corr2(R, R6) = 1

corr2(G, G6) = 1

corr2(B, B6) = 1

Here R, G, B are matrices for Red, Green, Blue component of

the Cover Image respectively, R1, G1,B1 are matrices for Red,

Green, Blue component of the Stegno-Image(1) respectively.

To extend the possibility of mathematical verification of

security of the method the entropy of the cover image and the

different stegano images are calculated and the percent

difference between the entropy of the cover image and stegano

images are calculated

Table 2. Entropy Of Various Stegano Images Compared With

The Original Image

From the above table of the entropies it very clear that the

difference between entropies the cover image and the

respective stegano images is very less also the Percentage of

variation in Entropy of Cover-Image and Stegano –images is

coming very less that is a very less of fraction showing a good

amount matching of the images making the difference

delectability very less.

Fig.5 Plot of RGB component of the cover image

 Udit Yadav et al. SGVU J Engg. & Techno., Vol. 1, Issue 2, pp.22-26

26

IV. CONCLUSIONS

In recent years, the extended growth in server storage provider

industry continues to drive the requirements for more and

more applications on the servers. These services can be

utilized without any investment on bulky IT set up and a large

demand to purchase the software. A large pool of the services

provided by the serve providing firms without any investment

on set up or IT infrastructure no need to hair IT professionals,

no need to train the IT resources it is just pay and get the

service at a very reasonable rate. The services provided by the

servers are so cheap and straight forward but at the same time

posses the threat of data insecurity. Because in this the data is

available in an remote server, which clients simultaneously is

used by several clients at a time in case of theft of the data or

any expose of data to any false client knowingly or

unknowingly may arise the questions on the data security.

An image steganographic process using the LSB encryption

technique is used to secure the data over the networks in such

scheme the data to be transferred is hidden in the LSBs of

pixels of the cover image so that he data or information to be

sent is in the form of LSBs of the cover image which cannot

be detected without any prior information of availability of

data in that image. The conclusions of the work carried out are

summarized below

 An automatic system is designed to upload to data on

the networks the data as soon as uploaded on the network are

encrypted in the LSB,s of a cover image and the data is no

longer available as the uploaded format but in the encrypted

format now.

 The data containing capacity of the cover image is

finite so if the data exceeds the capacity of the cover image a

multiple copies of the cover image are created the data file is

broken in the comestible size pieces and assembled back at the

time of recovery.

 An stegano image is created with respect to each

cover image embedded with data and the correlation of that

stegano image comes out to be 1 in each case, proving that no

one can detect the difference in stegano image and cover

image.

 The entropy of each stegano image is having a very

less difference with the entropy of the cover image again

justifying the a good hiding possibility of data in images.

V. REFERENCES

[1]. Juels and J. Burton S. Kaliski, “PORs: Proofs of Retrievability for Large
Files,” Proc. of CCS ’07, pp. 584–597, 2007.

[2]. H. Shacham and B. Waters, “Compact Proofs of Retrievability,” Proc. of

Asiacrypt ’08, Dec. 2008.
[3]. K. D. Bowers, A. Juels, and A. Oprea, “Proofs of Retrievability: Theory

and Implementation,” Cryptology ePrint Archive, Report 2008/175,

2008, http://eprint.iacr.org/.
[4]. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,

and D. Song, “Provable Data Possession at Untrusted Stores,” Proc. Of

CCS ’07, pp. 598–609, 2007.

[5]. G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable and
Efficient Provable Data Possession,” Proc. of SecureComm ’08, pp. 1–

10, 2008.

[6]. T. S. J. Schwarz and E. L. Miller, “Store, Forget, and Check: Using
Algebraic Signatures to Check Remotely Administered Storage,” Proc.

of ICDCS ’06, pp. 12–12, 2006.

[7]. M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard, “A
Cooperative Internet Backup Scheme,” Proc. of the 2003 USENIX

Annual Technical Conference (General Track), pp. 29–41, 2003.

[8]. K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-Availability and
Integrity Layer for Network Storage,” Cryptology ePrint Archive, Repor

2008/489, 2008, http://eprint.iacr.org/.

[9]. R. Chandramouli and N. Memon,"Analysis of LSB based Image
Steganography", IEEE ICIP, pp. 1022-1022, Oct. 2001.

[10]. R.J. Anderson, F.A.P. Petitcolas, “On The Limits of Steganography”,

IEEE Journal ofSelected Area in Communicafions, pp. 474-481, May
1998.

[11]. N.F. Johnson, S. Jajodia, “Staganalysis: The Investigation of

Hiding Information”, IEEE, pp. 113-116, 1998.
[12]. H. Hastur, Mandelsteg,

ftp://idea.sec.dsi.unimi.it/pub/security/crypt/code/

http://eprint.iacr.org/
http://eprint.iacr.org/

