
Suresh Gyan Vihar University Journal of Engineering & Technology

 (An International Bi‐Annual Journal)
 Vol . 1, Issue 2, 2015,pp.12-16

 ISSN: 2395‐0196

12

Review of Query Processing Techniques of Cloud

Databases
 Ruchi Nanda

Assistant Professor, IIS University Jaipur.

Abstract: The big challenge at the present time is to manage big distributed data like cloud. Traditional relational database

management systems (RDBMS) are a choice but they are not well-suited to scale across large clusters of distributed servers.

Hence alternatives to RDBMS have been developed. The development of new database management systems (DBMS) for the

cloud computing environment or adaptability of the existing systems to the cloud computing environment is a critical component

of cloud computing research.

This paper focuses on the study of the types of existing DBMS in the cloud computing domain. It reviews the various alternatives

to RDBMS. It also focuses on the study of the parameters responsible for the performance of cloud database queries and reviews

the work carried out so far, for the enhancement of the cloud database queries. Studies conducted in the paper helps in identifying

the areas where research is exclusively needed.

Keywords: Databases, Cloud Databases, SQL stores, NoSQL data stores, cloud query performance, indexing.

I. INTRODUCTION

Cloud is a network of servers that pools different

resources and cloud computing is a computing where

the customers can access those servers using a web

browser regardless of their device and location. A

cloud provides access to the resources when there is

demand and automatically deprivations them when

there is no demand.

A. Database Management System

The relational model was first introduced by Edgar

Codd in 1970. It uses a collection of tables to

represent data items and their relationships. It is well-

suited for Online Transaction Processing Systems.

These applications are based on the ACID properties

i.e. Atomicity, Consistency, Isolation, and Durability

(ACID). These traditional DBMS are also known as

row-oriented DBMS, as they store the data row-by-

row. They keep all the information about an entity

together and are preferred when queries access the

data regarding an entity. These row-oriented DBMS

includes Oracle, DB2, SQLServer, Teradata.

B. Cloud Databases

The data is distributed across several machines in

network, so efficient management of data is a big

worry for organizations using services of cloud. Here,

the most important requirement of database

management system is of scalability. Though

RDBMS are robust and a vast majority of current

database systems are based on the relational model

yet they are not well-suited to scaling across large

clusters of servers as they are not designed to be

distributed. So it is difficult to ensure consistency,

referential integrity and query performance in a

distributed relational environment. Structured Query

Language (SQL) is the dominant language of

RDBMS. But SQL databases don’t scale [25].

Hence alternatives to relational database management

systems have been developed. Some of them are:

1. Column-oriented DBMS is a database

management system that stores the data by

column. It is faster to read and allows a more

efficient compression of the data. Hence query

processing time is decreased. These are well-

suited for online analytical processing systems

(OLAP) and data warehouses. Some of the

database management systems which are already

in the market are Vertica (a commercial version of

C-store), SADAS as well as open-source DBMS

like LucidDB and MonetDB.

2. Key-value Stores (non-relational DBMS or

NoSQL datastores) are used for storing large scale

data & provide easy access. Its data models are

schema-free, join-less and horizontally scaled.

Here, domain is just like a table, but there is not a

predefined schema. It is like a bucket where we

can put the items. Items are identified by keys and

a given key can have dynamic set of attributes

attached to it. Data is created, updated, deleted

and retrieved using API method calls. Some of its

projects include Dynamo[11] used by

Amazon.com, Google’s Bigtable [7] used in the

Google’s application, Cassandra used by

Ruchi Nanda SGVU J Engg. & Techno., Vol. 1, Issue 2, pp. 12-16

13

Facebook for inbox search and project Voldemort

used by LinkedIn.

3. Mapreduce[7] is a distributed framework that

allows us to process large amount of data in

parallel approach. Programmers create different

map and reduce functions on the basis of user

queries. The data files are stored in distributed file

system (DFS). This approach is being used in

Google’s web search service, for the generation of

data stored in Bigtable.

II. PARAMETERS DETERMINING

PERFORMANCE OF DATABASE

MANAGEMENT SYSTEMS

The objective of performance enhancement is to

minimize the response time for each query and to

maximize the throughput of the database server. The

performance of the database management system can

be determined by the following factors:

 System level issues: These issues can perform

serious performance degradation. It occurs if [26]:

o Utilization of CPU is high

o Loads of I/O changes frequently

o Hardware and software is not configured

properly

o Operating System of virtual machines and

hypervisor [25].

o

 Generally these issues are automatically

managed by the cloud DBMS. So it reduces the

need for extensive manual testing.

 Database design: The database design is one of the

most important decision which has to be made

carefully as the performance of the queries

depends on:

o File organization techniques

o Constraints on the attributes

o Normalization and De-normalization of

relations.

o Indexing

 Query Processing and Optimization techniques:

Query processing and optimization are the main

components of the database management system.

The function of query processor [1] is to

transform the query written in high-level language

into a correct and efficient execution plan

expressed in low-level language. As there are

many ways to execute the same query, the aim of

query optimization is to choose an efficient

execution plan for processing a query. It chooses

the one that minimizes the resources.. It takes

information from the system catalog. The

optimizer are required to consider factors such as

the order in which to join the tables, the number

of rows for each join when calculating an optimal

access path, the algorithm to be used for

performing the joins.

Ruchi Nanda SGVU J Engg. & Techno., Vol. 1, Issue 2, pp. 12-16

14

In a distributed environment like cloud, data is

distributed to a number of sites, stored in its entirety

on all sites or spilt on many sites. Here the query is

processed and optimized in a different way. There are

various issues which needs to be considered like,

which copy of the data is to be used i.e. site selection,

amount of data that needs to be transmitted from its

location to the execution site, relative processing

speed at each site and transmitting the final result to

the site where the query is issued. The cost of the

plan depends on these issues.

III. LITERATURE REVIEW

The section focuses on the techniques used to

enhance the performance of query processor in cloud

databases. This section highlights the current work on

the specific techniques of indexing, processing and

optimization of queries.

Query efficiency is achieved by employing a pure

key-value data model where, both key and value are

arbitrary byte strings (e.g. Dynamo), or its variant (as

in Bigtable), where key is an arbitrary byte string and

value is a structured record consisting of a number of

named columns. But these solutions lack support for

secondary indexes, range queries and

multidimensional queries [24]. The current solution is

Mapreduce [10], which is a programming model and

a framework for processing large sets of raw data. A

map-reduce program consists of two functions: Map

and Reduce. The Map function processes the input

data by distributing them to worker nodes for parallel

computation and produces a set of intermediate

results as key-value pairs, while the reduce function

aggregates all the intermediate results with the same

key from each node to produce the result. It can be

used for structured data analysis of large sets. The

limitations of Mapreduce as given by [23] are:

 It produces the necessary secondary indices in an

offline batch manner. Hence, secondary indexes

are not up-to-date. So newly inserted rows

cannot be queried until they are indexed.

 It does not provide data schema support,

declarative query language and cost-based query

optimizations.

Cloud Global Index (CG-Index) [23], a secondary

B+-tree based indexing scheme for cloud storage

systems was proposed. It provides high scalability,

high throughput, high availability and high

concurrency. It provides range search and dictionary

operations. Index distribution technique for desired

scalability was used. Experiments on Amazon’s EC2

were carried on and the results demonstrated that it

handles a mixed workload of queries and updates

efficiently, but the main limitation of CG-index was

that it supports one-dimensional queries only.

Performance of the query processing can be increased

if operations are directly applied on the compressed

data [2]. C-store [22] is a column oriented store

which was extended by keeping this view.

Algorithms especially suited for column-oriented

systems compared with algorithms commonly used

by traditional DBMS. The comparisons were

performed by changing the parameters like query

workload and size of the data set. The results showed

that the performance benefits of operating directly on

compressed data in column oriented schemes is much

greater than the benefits in operating directly on row-

oriented schemes. They created decision-tree to aid

the database designer to decide how to compress a

particular column. The limitation with the optimizer

was that it is not aware of the decompression costs of

the various compression algorithms.

Various greedy and approximation algorithms have

been proposed for optimization of queries. But they

do not scale well for realistic workloads [17]. Two

greedy algorithms were developed later which

emphasizes on finding the most beneficial view in

each step instead of finding most promising query.

A number of dynamic programming algorithms have

been used but they are not able scale. So a new class

of query optimization algorithms was developed

known as Iterative dynamic programming. [16].

The performance of the database can be increased if

common subexpressions from multiple queries can be

evaluated only once and that can be reused in case

the same subexpression again comes. Inter-

application multi-query optimizer [18] was presented

that re-uses previously computed (intermediate)

results and eliminates redundant work. It was

experimentally proved that the inter-application

multi-query optimizer improves the query evaluation

performance significantly. The limitation of inter-

application optimizer is that the optimizer is limited

to identify and re-use equivalent intermediate results,

only. It is also beneficial to re-use the smallest

superset of a requested intermediate result in case the

equivalent result is not available, provided that using

the superset is cheaper.

The studies show that there is enough scope in the

performance improvement of queries as there are

certain limitations with the works reported in the past

and the same have a scope for further improvement.

Ruchi Nanda SGVU J Engg. & Techno., Vol. 1, Issue 2, pp. 12-16

15

IV. FUTURE WORK & CONCLUSION

With the increasing volume of data across the large

number of applications, the challenge is to distribute

the computations, responding to the query along with

the distribution of data. Relational database

management systems have grown overly complex,

difficult to manage, and are struggling today to take

full advantage of cloud computing technology [6].

So, there is need to reanalyze the design and

processing of relational database technologies and

refine the existing methods or develop new

approaches exclusively for the cloud environment.

These can be achieved by focusing on the following

issues:

 How to reduce the execution time of various

operations using indexing?

 How the desired information can be

retrieved immediately from the database?

 How to get the results back from the

database in time as well as in cost effective

manner?

For this, there is need to analyze thoroughly the

operational and architectural characteristics of cloud

databases. There is also a need to study the

techniques of processing and optimization of queries

in the cloud databases, so that existing techniques can

be refined.

REFERENCES

[1] Abadi, D. J. (2009), Data Management in the Cloud:

Limitations and Opportunities. IEEE Data Engineering

Bulletin, Volume 32, Number 1, March 2009, pp. 3-12

[2] Abadi D. J., S.R. Madden and M.C. Ferreira (2006),

Integrating Compression and Execution in Column-Oriented
Database Systems. Proceedings of the 2006 ACM SIGMOD

International conference on Management of data, ISBN:1-

59593-434-0 pp. 671 – 682

[3] Abadi D. J., S.R. Madden and N. Hachem (2008), Column-

stores vs. row-stores: how different are they really?
Proceedings of ACM SIGMOD International conference on

Management of data, ISBN:978-1-60558-102-6, pp. 967-980

[4] Abadi, D. J. (2008), Query Execution in Column- Oriented

Database Systems. Massachusetts Institute of Technology,

U.S.A.

[5] Anh (2009), Query Processing and Optimization.

http://cnx.org/content/m28213/latest/

[6] Bobrowski, S. (2011), The Future of Databases is in the

Clouds.
http://wiki.database.com/page/The_Future_of_Databases_is_

in_the_Clouds

[7] Chang, F., J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.

Gruber (2006), Bigtable: A Distributed Storage System for
Structured Data. Proceedings of the 7th symposium on

Operating systems design and implementation, ISBN:1-

931971-47-1, pp. 205 – 218.

[8] Cloud Computing vhttp://www.n-axis.in/practices-

cloudcomputing.php

[9] Connolly T. and C. Begg (1998), Database Systems A

Practical Approach to Design, Implementation and
Management, Pearson Education Ltd., New Delhi, India.

[10] Dean, J. and S. Ghemawat (2004) Mapreduce: Simplified
data processing on large clusters. Proceedings of the 6th

conference on Symposium on Opearting Systems Design &

Implementation ACM pp. 137–150

[11] DeCandia, G., D. Hastorun, M. Jampani, G. Kakulapati, A.

Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels(2007) Dynamo: Amazon’s highly available key-

value store, In SOSP, pp. 205–220.

[12] Garret (2010), What is a Column Oriented Database?

http://www.columnorienteddatabase.com/

[13] Gounaris, A. (2009), A Vision for Next Generation Query

Processors and an Associated Research Agenda. 2nd

International Conference on Data Management in Grid and
Peer-to-Peer Systems, pp. 1-11.

[14] Jain, V. (1997), Information Technology, BPB Publications,

New Delhi.

[15] Hurwitz, J., R. Bloor, M. Kaufman and F. Halpur (2010),

Cloud Computing for Dummies, Wiley Publishing Inc.,

Indianapolis, Indiana.

[16] Kossmann, D. and K. Stocker (2000), Iterative dynamic

programming: a new class of query optimization algorithms.

ACM Transactions on Database Systems (TODS) Volume

25, Issue 1.

[17] Kalnis, P. and D. Papadias (2003) Multi-query optimization

for on-line analytical processing. Information Systems,

Volume 28, Issue 5, pp. 457-473

[18] Manegold, S., A.J. Pellenkoft and M.L.Kersten, (2000), A

Multi-Query Optimizer for Monet 2000. Springer-Verlag,
2000 (repository id: 11170).

[19] Marks, E.A. and B. Lozano (2010), Executive Guide to
Cloud Computing, John Wiley & Sons, Inc., Hoboken, New

Jersey.

[20] Oracle® Enterprise Manager Cloud Control Advanced

Installation and Configuration Guide, 12c Release 2

(12.1.0.2)

[21] Ramakrishnan, R. and J. Gehrke (2000), Database

Management Systems, McGraw-Hill International Editions,
Singapore.

[22] Stonebraker, M., D. J. Abadi, A. Batkin, X. Chen, M.
Cherniack, M. Ferreira, E. Lau, A. Lin, S. R. Madden, E. J.

O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik

(2005) C-Store: A Column-Oriented DBMS. In VLDB
Trondheim, Norway, pp. 553–564.

[23] Wu, S., D. Beng and Kun (2010), Efficient B-tree based

indexing for cloud data processing., Volume 3, Issue 1-2.

http://cnx.org/content/m28213/latest/
http://portal.acm.org/results.cfm?query=Name%3A%22Sai%20Wu%22&querydisp=Name%3A%22Sai%20Wu%22&termshow=matchboolean&coll=DL&dl=ACM&CFID=6383191&CFTOKEN=16531447

Ruchi Nanda SGVU J Engg. & Techno., Vol. 1, Issue 2, pp. 12-16

16

[24] Wu, S. and K.L. Wu (2009), An indexing framework for

efficient retrieval on the cloud. IEEE Data Engineering
Bulletin, 32(1):pp. 77–84.

[25] Wiggins, A. (2009), SQL Databases Don't Scale.
http://adam.heroku.com/past/2009/7/6/sql_databases_dont_sc

ale/

[26] Fujitsu Technology Solutions GmbH (2010) Performance

Report on Hyper-V

globalsp.ts.fujitsu.com/dmsp/Publications/public/wp-PR-
Hyper-V-en.pdf

http://adam.heroku.com/past/2009/7/6/sql_databases_dont_scale/
http://adam.heroku.com/past/2009/7/6/sql_databases_dont_scale/

