PROGRAM OUTCOMES-M.PHARM (PHARMACEUTICS)

PO1. Pharmaceutical Sciences knowledge: Apply the knowledge of mathematics, science, pharmaceutical fundamentals, and a Pharmacy specialization to the solution of complex

Pharmaceutical problems.

PO1: Physicochemical properties of Formulations: The knowledge of importance of physical properties of the different pharmaceutical ingredients and the factors influencing them is very valuable for pharmaceutical dosage form design.

PO2: Unit Operations: Pharm. Engineering renders knowledge about the basic unit operations that are taking place in pharmaceutical industry and the different factors associated with it. This information is useful for both pharmaceutics and pharmaceutical engineering.

PO3: Entrepreneurship: The knowledge on different pharmaceutical dosage forms are imparted on students. This knowledge comes while handling a pharmacy or a manufacturing unit or in the further courses.

PO4: Design/Development of solutions: The information on solid dosage forms like tablets and capsules, their formulation and quality control serves as an important perquisite for dosage form design.

PO5: Application oriented Knowledge: The knowledge of biopharmaceutics enables the students to visualize the effect of pharmacokinetic (ADMET) parameters on the biological effect of the drug. The correlation of pharmacokinetics and pharmacodynamics is thus introduced and is experimentally explained to them.

PO6: Environment and Sustainability: Enable extension of pharmaceutical dosage forms, and enables the students to learn about different packaging materials used in pharmaceutical industry and the factors governing their use.

PO7: Conduct investigations of complex problems: To understand biopharmaceutical Principles and pharmacokinetic principles through different compartment models, multiple Dosage regimens, non-linear pharmacokinetics, and assessment of bioavailability and Bioequivalence

PO8. Effective Citizenship: Demonstrate empathetic social concern and equity centered National development and the ability to act with an informed awareness of issues and participate in civic life through volunteering.

PO9. Ethics: Recognize different value systems including your own, understand the moral dimensions of your decisions, and accept responsibility for them.

PO10. Environment and Sustainability: Understand the issues of environmental contexts and Sustainable development.

Program Specific outcome

PSO1: Understand a core and basic knowledge in different subjects of Pharmaceutical Sciences.

PSO2: Analyze the relationships among Pharmaceutics, Pharmaceutical and Medicinal Chemistry, Pharmacology and Pharmacognosy subjects.

PSO3: Understand the applications of Pharmaceutical Sciences in drug and formulation development, drug analysis, drug safety and efficacy in medicine.

PSO4: Perform procedures as per laboratory standards in the areas of Pharmaceutical Sciences.

PSO5: Understanding of the optimization and the development of novel drug delivery system

Course Outcome of M.Pharm

Paper Code	MPH 101T
Course Name	MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES
Course outcomes	Upon successful completion of the course, students would be able to:
CO 1	Chemicals and Excipients
CO 2	The analysis of various drugs in single and combination dosage form
CO 3	Theoretical and practical skills of the instruments

Paper Code	MPH 102T
Course Name	DRUG DELIVERY SYSTE
Course outcomes	Upon successful completion of the course, students would be able to:
CO 1	The various approaches for development of novel drug delivery systems
CO 2	The criteria for selection of drugs and polymers for the development of delivering syste
CO 3	The formulation and evaluation of Novel drug delivery systems

Paper Code	MPH 103T
Course Name	MODERN PHARMACEUTICS

Course outcomes	Upon successful completion of the course, students would be able to:
CO 1	The elements of preformulation studie
CO 2	The Active Pharmaceutical Ingredients and Generic drug Product development
CO 3	Industrial Management and GMP Considerations.
CO 4	Optimization Techniques & Pilot Plant Scale Up Techniques
CO 5	Stability Testing, sterilization process & packaging of dosage forms

Paper Code	MPH 104T
Course Name	REGULATORY AFFAIRS
Course outcomes	Upon successful completion of the course, students would be able to:
CO 1	To know the approval process o
CO 2	To know the chemistry, manufacturing controls and their regulatory importance
CO 3	To learn the documentation requirements for
CO 4	To learn the importance and

Paper Code	MPH 105P
Course Name	PHARMACEUTICS PRACTICALS - I
Course outcomes	Upon successful completion of the course, students would be able to:
CO 1	Analysis of pharmacopoeial compounds and their formulations by UV Vis spectrophotometer
CO 2	Simultaneous estimation of multi component containing formulations by UV spectrophotometry
CO 3	Experiments based on HPLC

CO 4	Experiments based on Gas Chromatography
CO 5	Estimation of riboflavin/quinine sulphate by fluorimetry
CO 6	Estimation of sodium/potassium by flame photometry
CO 7	To perform In-vitro dissolution profile of CR/SR marketed formulation
CO 8	Formulation and evaluation of sustained release matrix tablet
CO 9	Formulation and evaluation osmotically controlled DDS
CO 10	Preparation and evaluation of Floating DDS- hydro dynamically balanced DDS
CO 11	Formulation and evaluation of Muco adhesive table
CO 12	Formulation and evaluation of trans dermal patches.
CO 13	To carry out preformulation studies of tablets.
CO 14	To study the effect of compressional force on tablets disintegration time
CO 15	To study Micrometric properties of powders and granulation.
CO 16	To study the effect of particle size on dissolution of a table
CO 17	To study the effect of binders on dissolution of a
CO 18	To plot Heckal plot, Higuchi and peppas plot and determine similarity factors.

Paper Code	MPH 201T
Course Name	MOLECULAR PHARMACEUTICS (NANO TECHNOLOGY & TARGETED DDS) (NTDS)
Course	Upon successful completion of the course, students would be able to:
outcomes	
CO 1	The various approaches for development of novel drug delivery systems
CO 2	The criteria for selection of drugs and polymers for the development of NTDS
CO 3	The formulation and evaluation of novel drug delivery systems.

Paper Code	MPH 202T

Course Name	ADVANCED BIOPHARMACEUTICS & PHARMACOKINETICS
Course outcomes	Upon successful completion of the course, students would be able to:
CO 1	The basic concepts in biopharmaceutics and pharmacokinetics.
CO 2	The use raw data and derive the pharmacokinetic models and parameters the best describe the process of drug absorption, distribution, metabolism and elimination
CO 3	The critical evaluation of biopharmaceutic studies involving drug product equivalency
CO 4	The design and evaluation of dosage regimens of the drugs using pharmacokinetic and biopharmaceutic parameters.
CO 5	The potential clinical pharmacokinetic problems and application of basics of pharmacokinetic

Paper Code	MPH 203T
Course Name	COMPUTER AIDED DRUG DEVELOPMENT
Course	Upon successful completion of the course, students would be able to:
outcomes	
CO 1	History of Computers in Pharmaceutical Research and Development
CO 2	Computational Modeling of Drug Disposition
CO 3	Computers in Preclinical Development
CO 4	Optimization Techniques in Pharmaceutical Formulation
CO 5	Computers in Market Analysis
CO 6	Computers in Clinical Development
CO 7	Artificial Intelligence (AI) and Robotics
CO 8	Computational fluid dynamics(CFD)

Paper Code	MPH 204T
Course Name	COSMETICS AND COSMECEUTICALS

Course outcomes	Upon successful completion of the course, students would be able to:
CO 1	Key ingredients used in cosmetics and cosmeceuticals.
CO 2	Key building blocks for various formulations.
CO 3	Current technologies in the mar
CO 4	Various key ingredients and basic science to develop cosmetics and cosmeceuticals
CO 5	Scientific knowledge to develop cosmetics and cosmeceuticals with desired Safety, stability, and

Paper Code	MPH 205P
Course Name	PHARMACEUTICS PRACTICALS - II
Course outcomes	Upon successful completion of the course, students would be able to:
CO 1	To study the effect of temperature change, non-solvent addition, incompatible polymer addition in microcapsules preparation
CO 2	Preparation and evaluation of Alginate beads
CO 3	Formulation and evaluation of gelatin /albumin microspheres
CO 4	Formulation and evaluation of liposomes/niosomes
CO 5	Formulation and evaluation of spherules
CO 6	Improvement of dissolution characteristics of slightly soluble drug by Solid dispersion technique.
CO 7	Comparison of dissolution of two different marketed products /brands
CO 8	Protein binding studies of a highly protein bound drug & poorly protein bound drug
CO 9	Bioavailability studies of Paracetamol in animals.
CO 10	Pharmacokinetic and IVIVC data analysis by Winnoline R software
CO 11	In vitro cell studies for permeability and metabolism
CO 12	DoE Using Design Expert® Software
L	

CO 13	Formulation data analysis Using Design Expert® Software
CO 14	Quality-by-Design in Pharmaceutical Development
CO 15	Computer Simulations in Pharmacokinetics and Pharmacodynamics
CO 16	Computational Modeling Of Drug Disposition
CO 17	To develop Clinical Data Collection manual
CO 18	To carry out Sensitivity Analysis, and Population Modeling.
CO 19	To carry out Sensitivity Analysis, and Population Modeling.
CO 20	Development and evaluation of Shampoo and Toothpaste base
CO 21	To incorporate herbal and chemical actives to develop produce
CO 22	To address Dry skin, acne, blemish, Wrinkles, bleeding gums and dandruff

Paper Code	MRM 301T
Course Name	Research Methodology & Biostatistics
Course outcomes	Upon successful completion of the course, students would be able to:
CO 1	General Research Methodology
CO 2	Biostatistics
CO 3	Medical Research
CO 4	CPCSEA guidelines for laboratory animal facility
CO 5	Declaration of Helsinki

THE MASTER OF PHARMACY (M. PHARM.) COURSE REGULATION

(Based on notification in the Gazette of India No. 362, Dated December 11, 2014)

SCHEMEAND SYLLABUS

PHARMACY COUNCIL OF INDIA

Combined Council's Building, Kotla Road, Aiwan-E-Ghalib Marg, New Delhi-110 002.

Website: www.pci.nic.

Table of Contents

S.No.	Content	Page.No.
	Regulations	01
1.	Short Title and Commencement	01
2.	Minimum qualification for admission	01
3.	Duration of the program	01
4.	Medium of instruction and examinations	01
5.	Working days in each semester	01
6.	Attendance and progress	02
7.	Program/Course credit structure	02
8.	Academic work	03
9.	Course of study	03
10.	Program Committee	15
11.	Examinations/Assessments	16
12.	Promotion and award of grades	32
13.	Carry forward of marks	32
14.	Improvement of internal assessment	33
15.	Reexamination of end semester examinations	33
16.	Allowed to keep terms (ATKT)	33
17.	Grading of performances	33
18.	The Semester grade point average (SGPA)	34
19.	Cumulative Grade Point Average (CGPA)	34
20.	Declaration of class	35
21.	Project work	35
22.	Award of Ranks	36
23.	Award of degree	36
24.	Duration for completion of the program of study	36
25.	Revaluation I Retotaling of answer papers	36
26.	Re-admission after break of study	36
27.	Pharmaceutics (MPH)	37
28.	Industrial Pharmacy (MIP)	55
29.	Pharmaceutical Chemistry (MPC)	73
30.	Pharmaceutical Analysis (MPA)	98
31.	Pharmaceutical Quality Assurance (MQA)	119
32.	Pharmaceutical Regulatory Affairs (MRA)	142
33.	Pharmaceutical Biotechnology (MPB)	165
34.	Pharmacy Practice (MPP)	188
35.	Pharmacology (MPL)	209
36.	Pharmacognosy (MPG)	232
37.	Research Methodology & Biostatistics (MRM)	252

CHAPTER -I:REGULATIONS

1. Short Title and Commencement

These regulations shall be called as "The Revised Regulations for the Master of Pharmacy (M. Pharm.)Degree Program - Credit Based Semester System (CBSS) of the Pharmacy Council of India, New Delhi". They shall come into effect from the Academic Year 2016-17. The regulations framed are subject to modifications from time to time by the authorities of the university.

2. Minimum qualification for admission

A Pass in the following examinations

- a) B. Pharm Degree examination of an Indian university established by law in India from an institution approved by Pharmacy Council of India and has scored not less than 55 % of the maximum marks (aggregate of 4 years of B.Pharm.)
- b) Every student, selected for admission to post graduate pharmacy program in any PCI approved institution should have obtained registration with the State Pharmacy Council or should obtain the same within one month from the date of his/her admission, failing which the admission of the candidate shall be cancelled.

Note: It is mandatory to submit a migration certificate obtained from the respective university where the candidate had passed his/her qualifying degree (B.Pharm.)

3. Duration of the program

The program of study for M.Pharm. shall extend over a period of four semesters (two academic years). The curricula and syllabi for the program shall be prescribed from time to time by Phamacy Council of India, New Delhi.

4. Medium of instruction and examinations

Medium of instruction and examination shall be in English.

5. Working days in each semester

Each semestershall consist of not less than 100 working days. The odd semesters shall be conducted from the month of June July to November/December and the even semesters shall be conducted from the month of December January to May June in every calendar year.

6. Attendance and progress

A candidate is required to put in at least 80% attendance in individual courses considering theory and practical separately. The candidate shall complete the prescribed course satisfactorily to be eligible to appear for the respective examinations.

7. Program/Course credit structure

As per the philosophy of Credit Based Semester System, certain quantum of academic work viz. theory classes, practical classes, seminars, assignments, etc. are measured in terms of credits. On satisfactory completion of the courses, a candidate earns credits. The amount of credit associated with a course is dependent upon the number of hours of instruction per week in that course. Similarly the credit associated with any of the other academic, co/extracurricular activities is dependent upon the quantum of work expected to be put in for each of these activities per week/per activity.

7.1. Credit assignment

7.1.1. Theory and Laboratory courses

Courses are broadly classified as Theory and Practical. Theory courses consist of lecture (L) and Practical (P) courses consist of hours spent in the laboratory. Credits (C) for a course is dependent on the number of hours of instruction per week in that course, and is obtained by using a multiplier of one (1) for lecture and a multiplier of half (1/2) for practical (laboratory) hours. Thus, for example, a theory course having four lectures per week throughout the semester carries a credit of 4. Similarly, a practical having four laboratory hours per week throughout semester carries a credit of 2.

The contact hours of seminars, assignments and research work shall be treated as that of practical courses for the purpose of calculating credits. i.e., the contact hours shall be multiplied by 1/2. Similarly, the contact hours of journal club, research work presentations and discussions with the supervisor shall be considered as theory course and multiplied by 1.

7.2. Minimum credit requirements

The minimum credit points required for the award of M. Pharm. degree is 95. However based on the credit points earned by the students under the head of co-curricular activities, a student shall earn a maximum of 100 credit points. These credits are divided into Theory courses, Practical, Seminars, Assignments, Research work, Discussions with the supervisor, Journal club and Co-Curricular activities over the duration of four semesters. The credits

are distributed semester-wise as shown in Table 14. Courses generally progress in sequence, building competencies and their positioning indicates certain academic maturity on the part of the learners. Learners are expected to follow the semester-wise schedule of courses given in the syllabus.

8. Academic work

A regular record of attendance both in Theory, Practical, Seminar, Assignment, Journal club, Discussion with the supervisor, Research work presentation and Dissertation shall be maintained by the department / teaching staff of respective courses.

9. Course of study

The specializations in M.Pharm program is given in Table 1.

Table - 2: Course of study for M. Pharm. (Pharmaceutics)

Course Code	Course	Credit Hours	Credit Points	Hrs./w k	Marks
	Seme	ester I			
MPH101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MPH102T	Drug Delivery System	4	4	4	100
MPH103T	Modern Pharmaceutics	4	4	4	100
MPH104T	Regulatory Affair	4	4	4	100
MPH105P	Pharmaceutics Practical I	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Seme	ster II			
MPH201T	Molecular Pharmaceutics MPH201T (Nano Tech and Targeted DDS)		4	4	100
MPH202T	Advanced MPH202T Biopharmaceutics & Pharmacokinetics		4	4	100
МРН203Т	Computer Aided Drug Delivery System	4	4	4	100
MPH204T	MPH204T Cosmetic and Cosmeceuticals		4	4	100
MPH205P	Pharmaceutics Practical II	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 12: Course of study for M. Pharm. III Semester (Common for All Specializations)

Course Code	Course	Credit Hours	Credit Points
MRM 301T	Research Methodology and Biostatistics*	4	4
-	Journal club	1	1
-	Discussion / Presentation (Proposal Presentation)	2	2
-	Research Work	28	14
	Total	35	21

^{*} Non University Exam

Table - 13: Course of study for M. Pharm. IV Semester (Common for All Specializations)

Course Code	Course	Credit Hours	Credit Points
-	Journal Club	1	1
-	Research Work	31	16
-	Discussion/Final Presentation	3	3
	Total	35	20

Table - 14: Semester wise credits distribution

Semester	Credit Points
I	26
II	26
III	21
IV	20
Co-curricular Activities (Attending Conference, Scientific Presentations and Other Scholarly Activities)	Minimum=02 Maximum=07*
Total Credit Points	Minimum=95 Maximum=100*

^{*}Credit Points for Co-curricular Activities

Table - 15: Guidelines for Awarding Credit Points for Co-curricular Activities

Name of the Activity	Maximum Credit Points Eligible / Activity
Participation in National Level Seminar/Conference/Workshop/Symposium/ Training Programs (related to the specialization of the student)	01
Participation in international Level Seminar/Conference/Workshop/Symposium/ Training Programs (related to the specialization of the student)	02
Academic Award/Research Award from State Level/National Agencies	01
Academic Award/Research Award from International Agencies	02
Research / Review Publication in National Journals (Indexed in Scopus / Web of Science)	01
Research / Review Publication in International Journals (Indexed in Scopus / Web of Science)	02

Note: International Conference: Held Outside India

International Journal: The Editorial Board Outside India

*The credit points assigned for extracurricular and or co-curricular activities shall be given by the Principals of the colleges and the same shall be submitted to the University. The criteria to acquire this credit point shall be defined by the colleges from time to time.

10. Program Committee

- 1. The M. Pharm. programme shall have a Programme Committee constituted by the Head of the institution in consultation with all the Heads of the departments.
- 2. The composition of the Programme Committee shall be as follows: A teacher at the cadre of Professor shall be the Chairperson; One Teacher from eachM.Pharm specialization and four student representatives (two from each academic year), nominated by the Head of the institution.
- 3. Duties of the Programme Committee:
- i. Periodically reviewing the progress of the classes.
- ii. Discussing the problems concerning curriculum, syllabus and the conduct of classes.
- iii. Discussing with the course teachers on the nature and scope of assessment for the course and the same shall be announced to the students at the beginning of respective semesters.

- iv. Communicating its recommendation to the Head of the institution on academic matters.
- v. The Programme Committee shall meet at least twice in a semester preferably at the end of each sessionalexam and before the end semester exam.

11. Examinations/Assessments

The schemes for internal assessment and end semester examinations are given in Table – 16.

11.1. End semester examinations

The End Semester Examinations for each theory and practical coursethrough semesters I to IVshall beconducted by the respective university except for the subject with asterix symbol (*) in table I and II for which examinations shall be conducted by the subject experts at college level and the marks/grades shall be submitted to the university.

Tables – 1616 : Schemes for internal assessments and end semester (Pharmaceutics- MPH)

(Pharmaceutics- MPH)								
Course		Internal Assessment			End Semester Exams		Tota 1	
Code	Course	Continu ous Mode		sional ams Durati on	Tot al	Mar ks	Durati on	Mar ks
		SE	EMESTE	R I				
MPH 101T	Modern Pharmaceuti cal Analytical Techniques	10	15	1 Hr	25	75	3 Hrs	100
MPH 102T	Drug Delivery System	10	15	1 Hr	25	75	3 Hrs	100
MPH 103T	Modern Pharmaceuti cs	10	15	1 Hr	25	75	3 Hrs	100
MPH 104T	Regulatory Affair	10	15	1 Hr	25	75	3 Hrs	100
MPH 105P	Pharmaceuti cs Practical I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
			otal					650
		SE	MESTE	R II				
MPH 201T	Molecular Pharmaceuti cs(Nano Tech and Targeted DDS)	10	15	1 Hr	25	75	3 Hrs	100
MPH 202T	Advanced Biopharmac eutics & Pharmacokin etics	10	15	1 Hr	25	75	3 Hrs	100
MPH 203T	Computer Aided Drug Delivery System	10	15	1 Hr	25	75	3 Hrs	100
MPH	Cosmetic	10	15	1 Hr	25	75	3 Hrs	100

204T	and Cosmeceutic als							
MPH 205P	Pharmaceuti cs Practical I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
Total						650		

Tables - 26: Schemes for internal assessments and end semester examinations (Semester III&IV)

		Internal Assessment			End Semester Exams		Tota	
Course Code	Course	Conti nuou		Sessional Exams		Mark	Durati	l Mark s
		s Mode	Mark s	Durati on	al	S	on	5
	SEMESTER III							
MRM30 1T	Research Methodology and Biostatistics*	10	15	1 Hr	25	75	3 Hrs	100
-	Journal club	-	-	-	25	-	-	25
-	Discussion / Presentation (Proposal Presentation)	-	-	-	50	-	-	50
-	Research work*	-	-	-	-	350	1 Hr	350
Total						525		
SEMESTER IV								
-	Journal club	-	-	-	25	-	-	25
-	Discussion / Presentation (Proposal Presentation)	-	-	-	75	-	-	75
-	Research work and Colloquium	-	-	-	-	400	1 Hr	400
Total					500			

^{*}Non University Examination

11.2. Internal assessment: Continuous mode

The marks allocated for Continuous mode of Internal Assessment shall be awarded as per the scheme given below.

Table - 27: Scheme for awarding internal assessment: Continuous mode

Theory			
Criteria	Maximum Marks		
Attendance (Refer Table – 28)	8		
Student – Teacher interaction	2		
Total	10		
Practical			
Attendance (Refer Table – 28	10		
Based on Practical Records, Regular viva voce, etc.	10		
Total	20		

Table - 28: Guidelines for the allotment of marks for attendance

Percentage of Attendance	Theory	Practical	
95 – 100	8	10	
90 – 94	6	7.5	
85 – 89	4	5	
80 – 84	2	2.5	
Less than 80	0	0	

11.2.1. Sessional Exams

Two sessional exams shall be conducted for each theory / practical course as per the schedule fixed by the college(s). The scheme of question paper for theory and practical sessional examinations is given in the table. The average marks of two sessional exams shall be computed for internal assessment as per the requirements given in tables.

12. Promotion and award of grades

A student shall be declared PASS and eligible for getting grade in a course of M.Pharm.programme if he/she secures at least 50% marks in that particular courseincluding internal assessment.

13. Carry forward of marks

In case a student fails to secure the minimum 50% in any Theory or Practical course as specified in 12, then he/she shall reappear for the end semester examination of that course. However his/her marks of the Internal Assessment shall be carried over and he/she shall be entitled for grade obtained by him/her on passing.

14. Improvement of internal assessment

A student shall have the opportunity to improve his/her performance only once in the sessional exam component of the internal assessment. The re-conduct of the sessional exam shall be completed before the commencement of next end semester theory examinations.

15. Reexamination of end semester examinations

Reexamination of end semester examination shall be conducted as per the schedule given in table 29. The exact dates of examinations shall be notified from time to time.

Table - 29: Tentative schedule of end semester examinations

Semester	For Regular Candidates	For Failed Candidates		
I and III	November / December	May / June		
II and IV	May / June	November / December		

16. Allowed to keep terms (ATKT):

No student shall be admitted to any examination unless he/she fulfills the norms given in 6. ATKT rules are applicable as follows:

A student shall be eligible to carry forward all the courses of I and IIsemesters till the III semester examinations. However, he/she shall not be eligible to attend the courses of IV semester until all the courses of I, II and III semesters are successfully completed.

A student shall be eligible to get his/her CGPA upon successful completion of the courses of I to IV semesters within the stipulated time period as per the norms.

Note: Grade AB should be considered as failed and treated as one head for deciding ATKT. Such rules are also applicable for those students who fail to register for examination(s) of any course in any semester.

17. Grading of performances

17.1. Letter grades and grade points allocations:

Based on the performances, each student shall be awarded a final letter grade at the end of the semester for each course. The letter grades and their corresponding grade points are given in Table – 30.

Table – 30: Letter grades and grade points equivalent to Percentage of marks and performances

Percentage of Marks Obtained	Letter Grade	Grade Point	Performance
90.00 - 100	0	10	Outstanding
80.00 - 89.99	Α	9	Excellent
70.00 – 79.99	В	8	Good
60.00 - 69.99	С	7	Fair
50.00 - 59.99	D	6	Average
Less than 50	F	0	Fail
Absent	AB	0	Fail

A learner who remains absent for any end semester examination shall be assigned a letter grade of AB and a corresponding grade point of zero. He/she should reappear for the said evaluation/examination in due course.

18. The Semester grade point average (SGPA)

The performance of a student in a semester is indicated by a number called 'Semester Grade Point Average' (SGPA). The SGPA is the weighted average of the grade points obtained in all the courses by the student during the semester. For example, if a student takes five courses (Theory/Practical) in a semester with credits C1, C2, C3 and C4 and the student's grade points in these courses are G1, G2, G3 and G4, respectively, and then students' SGPA is equal to:

$$SGPA = C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4$$

$$C_1 + C_2 + C_3 + C_4$$

The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester shall take into consideration the F and ABS grade awarded in that semester. For example if a learner has a F or ABS grade in course 4, the SGPA shall then be computed as:

$$SGPA = \begin{array}{c} C_1G_1 + C_2G_2 + C_3G_3 + C_4* ZERO \\ \\ C_1 + C_2 + C_3 + C_4 \end{array}$$

19. Cumulative Grade Point Average (CGPA)

The CGPA is calculated with the SGPA of all the IV semesters to two decimal points and is indicated in final grade report card/final transcript showing the grades of all IV semesters and their courses. The CGPA shall reflect the failed statusin case of F grade(s), till the course(s) is/are passed. When the course(s) is/are passedby obtaining a pass grade on subsequent examination(s) the CGPA

shall only reflect the new grade and not the fail grades earned earlier. The CGPA is calculated as:

$$CGPA = \begin{array}{c} C_1S_1 + C_2S_2 + C_3S_3 + C_4S_4 \\ \\ C_1 + C_2 + C_3 + C_4 \end{array}$$

where C_1 , C_2 , C_3 ,.... is the total number of credits for semester I,II,III,.... and S_1,S_2 , S_3 ,...is the SGPA of semester I,II,III,.....

20. Declaration of class

The class shall be awarded on the basis of CGPA as follows:

First Class with Distinction = CGPA of. 7.50 and above First Class = CGPA of 6.00 to 7.49 Second Class = CGPA of 5.00 to 5.99

21. Project work

All the students shall undertake a project under the supervision of a teacher in Semester III to IV and submit a report. 4 copies of the project report shall be submitted (typed & bound copy not less than 75 pages).

The internal and external examiner appointed by the University shall evaluate the project at the time of the Practical examinations of other semester(s). The projects shall be evaluated as per the criteria given below.

Evaluation of Dissertation Book:

Objective(s) of the work done	50 Marks
Methodology adopted	150 Marks
Results and Discussions	250 Marks
Conclusions and Outcomes	50 Marks

Total 500 Marks

Evaluation of Presentation:

Presentation of work	100 Marks
Communication skills	50 Marks
Question and answer skills	100 Marks

Total 250 Marks

22. Award of Ranks

Ranks and Medals shall be awarded on the basis of final CGPA. However, candidates who fail in one or more courses during the M.Pharm program shall not be eligible for award of ranks. Moreover, the candidates should have completed the M. Pharm program in minimum prescribed number of years, (two years) for the award of Ranks.

23. Award of degree

Candidates who fulfill the requirements mentioned above shall be eligible for award of degree during the ensuing convocation.

24. Duration for completion of the program of study

The duration for the completion of the program shall be fixed as double the actual duration of the program and the students have to pass within the said period, otherwise they have to get fresh Registration.

25. Revaluation I Retotaling of answer papers

There is no provision for revaluation of the answer papers in any examination. However, the candidates can apply for retotaling by paying prescribed fee.

26. Re-admission after break of study

Candidate who seeks re-admission to the program after break of study has to get the approval from the university by paying a condonation fee.

PHARMACEUTICS(MPH)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MPH 101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives

After completion of course student is able to know,

- Chemicals and Excipients
- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 HOURS

- a. UV-Visible spectroscopy: Introduction, Theory, Laws, 11
 Instrumentation associated with UV-Visible spectroscopy, Hrs
 Choice of solvents and solvent effect and Applications of UV Visible spectroscopy.
 - b. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier -Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy
 - c. Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
 - d. Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.
- 2 NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

11 Hrs

- 3 Mass Spectroscopy: Principle, Theory, Instrumentation of Mass 11 Spectroscopy, Different types of ionization like electron impact, Hrs chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy
- 4 Chromatography: Principle, apparatus, instrumentation, 11 chromatographic parameters, factors affecting resolution and Hrs applications of the following:
 - a) Paper chromatography b) Thin Layer chromatography
 - c) Ion exchange chromatography d) Column chromatography
 - e) Gas chromatography f) High Performance Liquid chromatography
 - g) Affinity chromatography
- 5 a. Electrophoresis: Principle, Instrumentation, Working 11 conditions, factors affecting separation and applications of the Hrs following:
 - a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso electric focusing
 - b. X ray Crystallography: Production of X rays, Different X ray diffraction methods, Bragg's law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.
- 6 Immunological assays : RIA (Radio immuno assay), ELISA, 5 Hrs Bioluminescence assays.

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11. Marcel Dekker Series

DRUG DELIVERY SYSTEMS (MPH 102T)

SCOPE

This course is designed to impart knowledge on the area of advances in novel drug delivery systems.

OBJECTIVES

Upon completion of the course, student shall be able to understand

The various approaches for development of novel drug delivery systems.

The criteria for selection of drugs and polymers for the development of delivering system

The formulation and evaluation of Novel drug delivery systems..

THEORY 60 Hrs

- 1. Release(SR) and Controlled Release Sustained (CR) formulations: Introduction & basic concepts, advantages disadvantages, factors influencing, Physicochemical & biological approaches for SR/CR formulation, Mechanism of Drug Delivery from SR/CR formulation. Polymers: introduction, definition, classification, properties and application Dosage Forms for Personalized Medicine: Introduction. Definition. Pharmacogenetics, Categories of Patients for Personalized Medicines: Customized drug delivery systems, Bioelectronic Medicines, 3D printing of pharmaceuticals, Telepharmacy.
- 2 Rate Controlled Drug Delivery Systems: Principles & 10 Fundamentals, Types, Activation; Modulated Drug Delivery Hrs Systems; Mechanically activated, pH activated, Enzyme activated, and Osmotic activated Drug Delivery Systems Feedback regulated Drug Delivery Systems; Principles & Fundamentals.
- 3 Gastro-Retentive Drug Delivery Systems: Principle, concepts 10 advantages and disadvantages, Modulation of GI transit time Hrs approaches to extend GI transit. Buccal Drug Delivery Systems: Principle of muco adhesion, advantages and disadvantages, Mechanism of drug permeation, Methods of formulation and its evaluations.
- 4 Occular Drug Delivery Systems: Barriers of drug permeation, Methods to overcome barriers.
 Hrs

- 5 Transdermal Drug Delivery Systems: Structure of skin and 10 barriers, Penetration enhancers, Transdermal Drug Delivery Hrs Systems, Formulation and evaluation.
- 6 Protein and Peptide Delivery: Barriers for protein delivery. 08 Formulation and Evaluation of delivery systems of proteins and Hrs other macromolecules.
- Vaccine delivery systems: Vaccines, uptake of antigens, single shot vaccines, mucosal and transdermal delivery of vaccines.
 Hrs

REFERENCES

1. Y W. Chien, Novel Drug Delivery Systems, 2nd edition, revised and expanded,

Marcel Dekker, Inc., New York, 1992.

- 2. Robinson, J. R., Lee V. H. L, Controlled Drug Delivery Systems, Marcel Dekker, Inc., New York, 1992.
- 3. Encyclopedia of controlled delivery, Editor- Edith Mathiowitz, Published by WileyInterscience Publication, John Wiley and Sons, Inc, New York! Chichester/Weinheim
- 4. N.K. Jain, Controlled and Novel Drug Delivery, CBS Publishers & Distributors, New Delhi, First edition 1997 (reprint in 2001).
- 5. S.P.Vyas and R.K.Khar, Controlled Drug Delivery concepts and advances, Vallabh Prakashan, New Delhi, First edition 2002

JOURNALS

- 1. Indian Journal of Pharmaceutical Sciences (IPA)
- 2. Indian drugs (IDMA)
- 3. Journal of controlled release (Elsevier Sciences) desirable
- 4. Drug Development and Industrial Pharmacy (Marcel & Decker) desirable

MODERN PHARMACEUTICS (MPH 103T)

Scope

Course designed to impart advanced knowledge and skills required to learn various aspects and concepts at pharmaceutical industries

Objectives

Upon completion of the course, student shall be able to understand

- The elements of preformulation studies.
- The Active Pharmaceutical Ingredients and Generic drug Product development
- Industrial Management and GMP Considerations.
- Optimization Techniques & Pilot Plant Scale Up Techniques
- Stability Testing, sterilization process & packaging of dosage forms.

THEORY 60 HRS

- a. Preformation Concepts Drug Excipient interactions 10 different methods, kinetics of stability, Stability testing. Theories of Hrs dispersion and pharmaceutical Dispersion (Emulsion and Suspension, SMEDDS) preparation and stability Large and small volume parental physiological and formulation consideration, Manufacturing and evaluation.
 - b. Optimization techniques in Pharmaceutical Formulation: Concept and parameters of optimization, Optimization techniques in pharmaceutical formulation and processing. Statistical design, Response surface method, Contour designs, Factorial designs and application in formulation

10

- Validation: Introduction to Pharmaceutical Validation, Scope & 10 merits of Validation, Validation and calibration of Master plan, Hrs ICH & WHO guidelines for calibration and validation of equipments, Validation of specific dosage form, Types of validation. Government regulation, Manufacturing Process Model, URS, DQ, IQ, OQ & P.Q. of facilities.
- 3 cGMP & Industrial Management: Objectives and policies of 10 current good manufacturing practices, layout of buildings, services, equipments and their maintenance Production management: Production organization, , materials management, handling and transportation, inventory management and control, production and planning control, Sales forecasting, budget and cost control, industrial and personal relationship. Concept of Total Quality Management.

- 4 Compression and compaction: Physics of tablet compression, 10 compression, consolidation, effect of friction, distribution of Hrs forces, compaction profiles. Solubility.
- 5 Study of consolidation parameters; Diffusion parameters, 10 Dissolution parameters and Pharmacokinetic parameters, Heckel Hrs plots, Similarity factors f2 and f1, Higuchi and Peppas plot, Linearity Concept of significance, Standard deviation, Chi square test, students T-test, ANOVA test.

- 1. Theory and Practice of Industrial Pharmacy By Lachmann and Libermann
- 2. Pharmaceutical dosage forms: Tablets Vol. 1-3 by Leon Lachmann.
- 3. Pharmaceutical Dosage forms: Disperse systems, Vol, 1-2; By Leon Lachmann.
- 4. Pharmaceutical Dosage forms: Parenteral medications Vol. 1-2; By Leon Lachmann.
- 5. Modern Pharmaceutics; By Gillbert and S. Banker.
- 6. Remington's Pharmaceutical Sciences.
- Advances in Pharmaceutical Sciences Vol. 1-5; By H.S. Bean & A.H. Beckett.
- 8. Physical Pharmacy; By Alfred martin
- 9. Bentley's Textbook of Pharmaceutics by Rawlins.
- 10. Good manufacturing practices for Pharmaceuticals: A plan for total quality control, Second edition; By Sidney H. Willig.
- 11. Quality Assurance Guide; By Organization of Pharmaceutical producers of India.
- 12.Drug formulation manual; By D.P.S. Kohli and D.H.Shah. Eastern publishers, New Delhi.
- 13. How to practice GMPs; By P.P.Sharma. Vandhana Publications, Agra.
- 14. Pharmaceutical Process Validation; By Fra. R. Berry and Robert A. Nash.
- 15. Pharmaceutical Preformulations; By J.J. Wells.
- 16. Applied production and operations management; By Evans, Anderson, Sweeney and Williams.
- 17. Encyclopaedia of Pharmaceutical technology, Vol I III.

REGULATORY AFFAIRS (MPH 104T)

Scope

Course designed to impart advanced knowledge and skills required to learn the concept of generic drug and their development, various regulatory filings in different countries, different phases of clinical trials and submitting regulatory documents: filing process of IND, NDA and ANDA

- To know the approval process of
- To know the chemistry, manufacturing controls and their regulatory importance
- To learn the documentation requirements for
- To learn the importance and

Objectives:

Upon completion of the course, it is expected that the students will be able to understand

- The Concepts of innovator and generic drugs, drug development process
- The Regulatory guidance's and guidelines for filing and approval process
- Preparation of Dossiers and their submission to regulatory agencies in different countries
- Post approval regulatory requirements for actives and drug products
- Submission of global documents in CTD/ eCTD formats
- Clinical trials requirements for approvals for conducting clinical trials
- Pharmacovigilence and process of monitoring in clinical trials.

THEORY 60 Hrs

- 1. a. Documentation in Pharmaceutical industry: Master 12 formula record, DMF (Drug Master File), distribution records. Hrs Generic drugs product development Introduction , Hatch-Waxman act and amendments, CFR (CODE OF FEDERAL REGULATION) ,drug product performance, in-vitro, ANDA regulatory approval process, NDA approval process, BE and drug product assessment, in -vivo, scale up process approval changes, post marketing surveillance, outsourcing BA and BE to CRO.
 - b. Regulatory requirement for product approval: API, biologics, novel, therapies obtaining NDA, ANDA for generic drugs ways and means of US registration for foreign drugs

- 2 CMC, post approval regulatory affairs. Regulation for combination 12 products and medical devices.CTD and ECTD format, industry Hrs and FDA liaison. ICH Guidelines of ICH-Q, S E, M. Regulatory requirements of EU, MHRA, TGA and ROW countries.
- 3 Non clinical drug development: Global submission of IND, 12 NDA, ANDA. Investigation of medicinal products dossier, dossier Hrs (IMPD) and investigator brochure (IB).
- 4 Clinical trials: Developing clinical trial protocols. Institutional 12 review board/ independent ethics committee Formulation and Hrs working procedures informed Consent process and procedures. HIPAA- new, requirement to clinical study process, pharmacovigilance safety monitoring in clinical trials.

- 1. Generic Drug Product Development, Solid Oral Dosage forms, Leon Shargel and IsaderKaufer, Marcel Dekker series, Vol.143
- 2. The Pharmaceutical Regulatory Process, Second Edition Edited by Ira R. Berry and Robert P.Martin, Drugs and the Pharmaceutical Sciences, Vol. 185, Informa Health care Publishers.
- 3. New Drug Approval Process: Accelerating Global Registrations By Richard A Guarino, MD,5th edition, Drugs and the Pharmaceutical Sciences, Vol. 190.
- 4. Guidebook for drug regulatory submissions / Sandy Weinberg. By John Wiley & Sons.Inc.
- 5. FDA regulatory affairs: a guide for prescription drugs, medical devices, and biologics/edited By Douglas J. Pisano, David Mantus.
- 6. Clinical Trials and Human Research: A Practical Guide to Regulatory Compliance By Fay A.Rozovsky and Rodney K. Adams
- 7. www.ich.org/
- 8. www.fda.gov/
- 9. europa.eu/index_en.htm
- 10. https://www.tga.gov.au/tga-basics

PHARMACEUTICS PRACTICALS - I (MPH 105P)

- Analysis of pharmacopoeial compounds and their formulations by UV Vis spectrophotometer
- Simultaneous estimation of multi component containing formulations by UV spectrophotometry
- 3. Experiments based on HPLC
- 4. Experiments based on Gas Chromatography
- 5. Estimation of riboflavin/quinine sulphate by fluorimetry
- 6. Estimation of sodium/potassium by flame photometry
- 7. To perform In-vitro dissolution profile of CR/SR marketed formulation
- 8. Formulation and evaluation of sustained release matrix tablets
- 9. Formulation and evaluation osmotically controlled DDS
- 10. Preparation and evaluation of Floating DDS- hydro dynamically balanced DDS
- 11. Formulation and evaluation of Muco adhesive tablets.
- 12. Formulation and evaluation of trans dermal patches.
- 13. To carry out preformulation studies of tablets.
- 14. To study the effect of compressional force on tablets disintegration time.
- 15. To study Micromeritic properties of powders and granulation.
- 16. To study the effect of particle size on dissolution of a tablet.
- 17. To study the effect of binders on dissolution of a tablet.
- 18. To plot Heckal plot, Higuchi and peppas plot and determine similarity factors.

MOLECULAR PHARMACEUTICS (NANO TECHNOLOGY & TARGETED DDS) (NTDS) (MPH 201T)

Scope

This course is designed to impart knowledge on the area of advances in novel drug delivery systems.

Objectives

Upon completion of the course student shall be able to understand

- The various approaches for development of novel drug delivery systems.
- The criteria for selection of drugs and polymers for the development of NTDS
- The formulation and evaluation of novel drug delivery systems.

THEORY 60 Hrs

- 1. Targeted Drug Delivery Systems: Concepts, Events and 12 biological process involved in drug targeting. Tumor targeting and Hrs Brain specific delivery.
- 2 Targeting Methods: introduction preparation and evaluation. 12 Nano Particles & Liposomes: Types, preparation and evaluation. Hrs
- 3 Micro Capsules / Micro Spheres: Types, preparation and 12 evaluation, Monoclonal Antibodies; preparation and application, Hrs preparation and application of Niosomes, Aquasomes, Phytosomes, Electrosomes.
- 4 Pulmonary Drug Delivery Systems : Aerosols, propellents, 12 ContainersTypes, preparation and evaluation, Intra Nasal Route Hrs Delivery systems; Types, preparation and evaluation.
- 5 Nucleic acid based therapeutic delivery system: Gene therapy, 12 introduction (ex-vivo & in-vivo gene therapy). Potential target diseases for gene therapy (inherited disorder and cancer). Gene expression systems (viral and nonviral gene transfer). Liposomal gene delivery systems.

Biodistribution and Pharmacokinetics. knowledge of therapeutic antisense molecules and aptamers as drugs of future.

- 1. Y W. Chien, Novel Drug Delivery Systems, 2nd edition, revised and expanded, Marcel Dekker, Inc., New York, 1992.
- 2. S.P.Vyas and R.K.Khar, Controlled Drug Delivery concepts and advances, VallabhPrakashan, New Delhi, First edition 2002.
- 3. N.K. Jain, Controlled and Novel Drug Delivery, CBS Publishers & Distributors, NewDelhi, First edition 1997 (reprint in 2001).

ADVANCED BIOPHARMACEUTICS & PHARMACOKINETICS (MPH 202T)

Scope

This course is designed to impart knowledge and skills necessary for dose calculations, dose adjustments and to apply biopharmaceutics theories in practical problem solving. Basic theoretical discussions of the principles of biopharmaceutics and pharmacokinetics are provided to help the students' to clarify the concepts.

Objectives

Upon completion of this course it is expected that students will be able understand,

- The basic concepts in biopharmaceutics and pharmacokinetics.
- The use raw data and derive the pharmacokinetic models and parameters the best describe the process of drug absorption, distribution, metabolism and elimination.
- The critical evaluation of biopharmaceutic studies involving drug product equivalency.
- The design and evaluation of dosage regimens of the drugs using pharmacokinetic and biopharmaceutic parameters.
- The potential clinical pharmacokinetic problems and application of basics of pharmacokinetic

THEORY 60 Hrs

12 1. Drug Absorption from the Gastrointestinal Tract: Gastrointestinal tract, Mechanism of drug absorption, Factors affecting drug absorption, pH-partition theory of drug absorption. Formuulation and physicochemical factors: Dissolution rate, Dissolution Noves-Whitney equation and drug process, dissolution, Factors affecting the dissolution rate. Gastrointestinal absorption: role of the dosage form: Solution (elixir, syrup and solution) as a dosage form, Suspension as a dosage form, Capsule as a dosage form, Tablet as a dosage form, Dissolution methods ,Formulation and processing factors, Correlation of in vivo data with in vitro dissolution data. Transport model: Permeability-Solubility-Charge State and the pH Partition Hypothesis, Properties of the Gastrointestinal Tract (GIT), pH Microclimate Intracellular Hq Environment. Tight-Junction Complex.

2 Biopharmaceutic considerations in drug product design Vitro Drug Product Performance: Introduction. biopharmaceutic factors affecting drug bioavailability, rate-limiting steps in drug absorption, physicochemical nature of the drug formulation factors affecting drug product performance, in vitro: dissolution and drug release testing, compendial methods of dissolution, alternative methods of dissolution testing, meeting dissolution requirements, problems of variable control in dissolution testingperformance of drug products. In vitro-in vivo correlation, dissolution profile comparisons, drua product stability, considerations in the design of a drug product.

12 Hrs

12

12

Hrs

12

Hrs

- 3 Pharmacokinetics: Basic considerations. pharmacokinetic models, compartment modeling; one compartment model- IV bolus, IV infusion, extra-vascular. Multi compartment model:two compartment - model in brief, non-linear pharmacokinetics: cause of non-linearity, Michaelis - Menten equation, estimation of k_{max} and v_{max}. Drug interactions: introduction, the effect of proteininteractions.the effect οf bindina tissue-binding interactions.cvtochrome p450-based drua interactions.drug interactions linked to transporters.
- 4 Drug Product Performance, In Vivo: Bioavailability and Bioequivalence: drug product performance. purpose bioavailability studies, relative and absolute availability, methods for assessing bioavailability, bioequivalence studies, design and evaluation of bioequivalence studies, study designs, crossover study designs, evaluation of the data, bioequivalence example, study submission and drug review process. biopharmaceutics classification system, methods. Permeability: In-vitro, in-situ and In-vivo methods.generic biologics (biosimilar products), clinical significance of bioequivalence studies, special concerns in bioavailability and bioequivalence studies, generic substitution.
- Application of Pharmacokinetics: Modified-Release Drug Products, Targeted Drug Delivery Systems and Biotechnological Products. Introduction to Pharmacokinetics and pharmacodynamic, drug interactions. Pharmacokinetics and pharmacodynamics of biotechnology drugs. Introduction, Proteins and peptides, Monoclonal antibodies, Oligonucleotides, Vaccines (immunotherapy), Gene therapies.

- 1. Biopharmaceutics and Clinical Pharmacokinetics by Milo Gibaldi, 4th edition, Philadelphia, Lea and Febiger, 1991
- 2. Biopharmaceutics and Pharmacokinetics, A. Treatise, D.M. Brahmankar and Sunil B. Jaiswal., VallabPrakashan, Pitampura, Delhi
- 3. Applied Biopharmaceutics and Pharmacokinetics by Shargel. Land YuABC, 2ndedition, Connecticut Appleton Century Crofts, 1985
- 4. Textbook of Biopharmaceutics and Pharmacokinetics, Dr. Shobha Rani R. Hiremath, Prism Book
- Pharmacokinetics by Milo Gibaldi and D. Perrier, 2nd edition, Marcel Dekker Inc., New York, 1982
- 6. Current Concepts in Pharmaceutical Sciences: Biopharmaceutics, Swarbrick. J., Leaand Febiger, Philadelphia, 1970
- Clinical Pharmacokinetics, Concepts and Applications 3rd edition by MalcolmRowland and Thom~ N. Tozer, Lea and Febiger, Philadelphia, 1995
- 8. Dissolution, Bioavailability and Bioequivalence, Abdou. H.M, Mack PublishingCompany, Pennsylvania 1989
- 9. Biopharmaceutics and Clinical Pharmacokinetics, An Introduction, 4th edition, revised and expande by Robert. E. Notari, Marcel Dekker Inc, New York and Basel, 1987.
- Biopharmaceutics and Relevant Pharmacokinetics by John. G Wagner and M.Pemarowski, 1st edition, Drug Intelligence Publications, Hamilton, Illinois, 1971.
- 11. Encyclopedia of Pharmaceutical Technology, Vol 13, James Swarbrick, James. G.Boylan, Marcel Dekker Inc, New York, 1996.
- 12. Basic Pharmacokinetics, 1 st edition, Sunil S Jambhekarand Philip J Breen, pharmaceutical press, RPS Publishing, 2009.
- 13. Absorption and Drug Development- Solubility, Permeability, and Charge State, Alex Avdeef, John Wiley & Sons, Inc, 2003.

COMPUTER AIDED DRUG DEVELOPMENT (MPH 203T)

Scope

This course is designed to impart knowledge and skills necessary for computer Applications in pharmaceutical research and development who want to understand the application of computers across the entire drug research and development process. Basic theoretical discussions of the principles of more integrated and coherent use of computerized information (informatics) in the drug development process are provided to help the students to clarify the concepts.

Objectives

Upon completion of this course it is expected that students will be able to understand,

- History of Computers in Pharmaceutical Research and Development
- Computational Modeling of Drug Disposition
- Computers in Preclinical Development
- Optimization Techniques in Pharmaceutical Formulation
- Computers in Market Analysis
- Computers in Clinical Development
- Artificial Intelligence (AI) and Robotics
- Computational fluid dynamics(CFD)

THEORY 60 Hrs

- 1. a. Computers in Pharmaceutical Research and 12 Development: A General Overview: History of Computers in Hrs Pharmaceutical Research and Development. Statistical modeling in Pharmaceutical research and development: Descriptive versus Statistical Mechanistic Modeling, Parameters. Estimation. Confidence Regions, Nonlinearity at the Optimum, Sensitivity Analysis, Optimal Design, Population Modeling b. Quality-by-Design In Pharmaceutical Development: Introduction, ICH Q8 guideline, Regulatory and industry views on ObD. Scientifically based ObD - examples of application.
- Computational Modeling Of Drug Disposition: Introduction 12 ,Modeling Techniques: Drug Absorption, Solubility, Intestinal Hrs Permeation, Drug Distribution ,Drug Excretion, Active Transport; P-gp, BCRP, Nucleoside Transporters, hPEPT1, ASBT, OCT, OATP, BBB-Choline Transporter.

3 Computer-aided formulation development:: Concept of 12 Hrs optimization, Optimization parameters, Factorial design, Optimization technology & Screening design. Computers in Pharmaceutical Formulation: Development of pharmaceutical emulsions, microemulsion drug carriers Legal Protection of Innovative Uses of Computers in R&D, The Ethics of Computing in Pharmaceutical Research, Computers in Market analysis

12

- 4 a. Computer-aided biopharmaceutical characterization:
 Gastrointestinal absorption simulation. Introduction, Theoretical background, Model construction, Parameter sensitivity analysis, Virtual trial, Fed vs. fasted state, In vitro dissolution and in vitro-in vivo correlation, Biowaiver considerations
 - b. Computer Simulations in Pharmacokinetics and Pharmacodynamics: Introduction, Computer Simulation: Whole Organism, Isolated Tissues, Organs, Cell, Proteins and Genes.
 - c. Computers in Clinical Development: Clinical Data Collection and Management, Regulation of Computer Systems
- 5 Artificial Intelligence (AI), Robotics and Computational fluid dynamics: General overview, Pharmaceutical Automation, Hrs Pharmaceutical applications, Advantages and Disadvantages. Current Challenges and Future Directions.

- 1. Computer Applications in Pharmaceutical Research and Development, Sean Ekins, 2006, John Wiley & Sons.
- 2. Computer-Aided Applications in Pharmaceutical Technology, 1st Edition, Jelena Djuris, Woodhead Publishing
- 3. Encyclopedia of Pharmaceutical Technology, Vol 13, James Swarbrick, James. G.Boylan, Marcel Dekker Inc, New York, 1996.

COSMETICS AND COSMECEUTICALS (MPH 204T)

Scope

This course is designed to impart knowledge and skills necessary forthefundamental need for cosmetic and cosmeceutical products.

Objectives

Upon completion of the course, the students shall be able to understand

- Key ingredients used in cosmetics and cosmeceuticals.
- · Key building blocks for various formulations.
- Current technologies in the market
- Various key ingredients and basic science to develop cosmetics and cosmeceuticals
- Scientific knowledge to develop cosmetics and cosmeceuticals with desired Safety, stability, and efficacy.

THEORY 60 Hrs

- Cosmetics Regulatory: Definition of cosmetic products as per 12 Indian regulation. Indian regulatory requirements for labeling of Hrs cosmetics Regulatory provisions relating to import of cosmetics., Misbranded and spurious cosmetics. Regulatory provisions relating to manufacture of cosmetics Conditions for obtaining license, prohibition of manufacture and sale of certain cosmetics, loan license, offences and penalties.
- Cosmetics Biological aspects: Structure of skin relating to 12 problems like dry skin, acne, pigmentation, prickly heat, wrinkles and body odor. Structure of hair and hair growth cycle. Common problems associated with oral cavity. Cleansing and care needs for face, eye lids, lips, hands, feet, nail, scalp, neck, body and under-arm.
- 3 Formulation Building blocks: Building blocks for different 12 product formulations of cosmetics/cosmeceuticals. Surfactants Hrs Classification and application. Emollients, rheological additives: classification and application. Antimicrobial used as preservatives, their merits and demerits. Factors affecting microbial preservative efficacy. Building blocks for formulation of a moisturizing cream, vanishing cream, cold cream, shampoo and toothpaste. Soaps and syndetbars.

Perfumes; Classification of perfumes. Perfume ingredients listed as allergens in EU regulation.

- Controversial ingredients: Parabens, formaldehyde liberators, dioxane.
- 4 Design of cosmeceutical products: Sun protection, sunscreens 12 classification and regulatory aspects. Addressing dry skin, acne, Hrs sun-protection, pigmentation, prickly heat, wrinkles, body odor., dandruff, dental cavities, bleeding gums, mouth odor and sensitive teeth through cosmeceutical formulations.
- 5 Herbal Cosmetics: Herbal ingredients used in Hair care, skin 12 care and oral care. Review of guidelines for herbal cosmetics by Hrs private bodies like cosmos with respect to preservatives, emollients, foaming agents, emulsifiers and rheology modifiers. Challenges in formulating herbal cosmetics.

- 1. Harry's Cosmeticology. 8th edition.
- 2. Poucher'sperfumecosmeticsandSoaps,10th edition.
- Cosmetics Formulation, Manufacture and quality control, PP.Sharma,4th edition
- 4. Handbook of cosmetic science and Technology A.O.Barel, M.Paye and H.I. Maibach. 3 rd edition
- 5. Cosmetic and Toiletries recent suppliers catalogue.
- 6. CTFA directory.

PHARMACEUTICS PRACTICALS - II (MPH 205P)

- 1. To study the effect of temperature change, non solvent addition, incompatible polymer addition in microcapsules preparation
- 2. Preparation and evaluation of Alginate beads
- 3. Formulation and evaluation of gelatin /albumin microspheres
- 4. Formulation and evaluation of liposomes/niosomes
- 5. Formulation and evaluation of spherules
- 6. Improvement of dissolution characteristics of slightly soluble drug by Solid dispersion technique.
- 7. Comparison of dissolution of two different marketed products /brands
- 8. Protein binding studies of a highly protein bound drug & poorly protein bound drug
- 9. Bioavailability studies of Paracetamol in animals.
- 10. Pharmacokinetic and IVIVC data analysis by Winnoline^R software
- 11. In vitro cell studies for permeability and metabolism
- 12. DoE Using Design Expert® Software
- 13. Formulation data analysis Using Design Expert Software
- 14. Quality-by-Design in Pharmaceutical Development
- 15. Computer Simulations in Pharmacokinetics and Pharmacodynamics
- 16. Computational Modeling Of Drug Disposition
- 17. To develop Clinical Data Collection manual
- 18. To carry out Sensitivity Analysis, and Population Modeling.
- 19. Development and evaluation of Creams
- 20. Development and evaluation of Shampoo and Toothpaste base
- 21. To incorporate herbal and chemical actives to develop products
- 22. To address Dry skin, acne, blemish, Wrinkles, bleeding gums and dandruff