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ABSTRACT 

 

In the present paper we obtained the most general 

solution of two-dimension conduction of heat in a 

finite rod having the constant thermal diffusivity k0 

by using the general prolongation formula for their 

symmetry. Several authors obtained solution of 

heat equation using different type of method [3], 

[4], [5], [8], [15], [16]. In recent year the authors 

Horak and Gruber [3], Kurt [4] worked for finding 

the solution of two-dimension heat equation.   

 

Key Words: Scaling, Translation, Linearity, 

Galilean-Boost. 

 

1. Introduction: 

 

1.1 The General Prolongation formula: 
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be a vector field defined on an open subset M  X 

 U where X is the space of independent variables, 

U is the space of dependent variables, p is the 

number of independent variables and q is the 

number of dependent variables for the system. 

Then nth-prolongation of v is the vector field  
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defined on the corresponding space M(n)  X  U(n) 

where X is the space of the independent variables, 

U(n) is the space of the dependent variables and the 

derivative of the dependent variables up-to n (order 

of differential equation). The second summation 

being over all unordered multi-indices J = (j1,…,jk) 

with 1 jk  p, 1  k  n. The coefficient function 
J

 of pr(n) v are given by the following formula 
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where 
iu  =  iu x   and , J iu

 =  i

Ju x   [7].
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1.2 Theorem: 

 

Suppose d(x, u(n)), for d =1,…,l is a system of 

differential equations of maximal rank defined over 

M  X  U. If G is a local group of transformations 

acting on M and 

 pr(n)v [d (x, u(n))] = 0 (1.2.1) 

for d =1,…,l, whenever (x, u(n)) = 0 for every 

infinitesimal generator v of G, then G is a 

symmetry group of the system, [7]. 

 

2. Solution of the Heat conduction equation: 

 

In this section, we obtained the most general 

solution by calculate the symmetries for two – 

dimensional (2-D) Heat conduction in finite rod, 

without source, with the following assumptions (a). 

The position of the rod is in the space, (b). The rod 

is homogeneous, (c). The Heat is uniformly 

distributed over its cross sectional area at a given 

time t, (d). The surface of the rod is insulated to 

prevent any loss of Heat through the boundary, (e). 

u(x, y, t) is the temperature at the point (x, y) at 

time t, (f). k0 be the constant thermal diffusivity, 

and then the equation to the problem of 2-D Heat 

conduction in a rod is 

ut = k0 ( uxx + uyy )                            (2.1) 

 

 

 

which is the second order differential equation with 

three independent variables and one dependent 

variable, so in our notation p = 3, n = 2 and q =1, 

[1], [9].  

 

Let   

v = (x, y, t, u) x + (x, y, t, u) y + (x, y, t, u) t + 

(x, y, t, u) u                                                     (2.2) 

be a vector field on XU. Now, determined the 

second prolongation of v by using (1.1.2) 

 

pr(2)v=+x

xu +y

yu +t

tu +xx

xxu +xy

xyu +xt

xtu

+yy

yyu +yt

ytu +tt

ttu  (2.3) 

The coefficients present in (2.3) are calculated by 

using (1.1.3), applied pr(2)v to (2.1), the 

infinitesimal criterion (1.2.1) takes the form 

t = k0 (
xx + yy )                             (2.4) 

Substituted the value of t, xx and yy in equation 

(2.4) and replaced ut by k0 ( uxx + uyy ) whenever it 

present in equation (2.4) and then equated the 

coefficients of the terms in the first and second 

order partial derivatives of u, the determining 

equations for the symmetry group of (2.1) are 

found as follow. 

 

Table 1: The Determine Equation Table 

Mono-mial Coefficient Eq. No. Mono-mial Coefficient Eq. No. 

1 
t = k0 (

xx 

+ yy ) 
(1) uy uyt –2 k0 u = 0 (16) 

ux 

–t = k0 

(2xu – xx – 

yy) 

(2) uxx 
k0(u –t ) = k0 ( (u – 

2x) – k0 (xx + yy ) ) 
(17) 

uy 

–t = k0 

(2yu – xx –

yy) 

(3) uyy 
k0(u –t ) = k0 ( (u – 

2y) –k0 (xx + yy ) ) 
(18) 

2

xu  
0 = k0 (uu – 

2xu ) 
(4) 

2

xxu  – 2

0k u = – 2

0k u (19) 
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2

yu  
0 = k0 (uu – 

2yu ) 
(5) 

2

yyu  – 2

0k u = – 2

0k u (20) 

3

xu  0 = –k0 uu (6) uxx uyy –2 2

0k u = –2 2

0k u (21) 

3

yu  0 = –k0 uu (7) 
2

xu  uy 0 = –k0 uu (22) 

ux uy 

0 = –k0 

(2xu + 2yu 

) 

(8) 
2

xu  uxx 0 = – 2

0k uu (23) 

ux uxx 

–k0 u = –k0 

(2 k0 xu 

+3u ) 

(9) 
2

xu  uyy 0 = – 2

0k uu (24) 

ux uyy 
–k0 u = – (2 

k0 xu +u ) 
(10) 

2

yu  ux 0 = –k0 uu (25) 

uy uxx 

–k0 u = –k0 

(2 k0 yu + 

u ) 

(11) 
2

yu  uxx 0 = – 2

0k uu (26) 

uy uyy 

–k0 u = – k0 

(2 k0 yu 

+3u ) 

(12) 
2

yu  uyy 0 = – 2

0k uu (27) 

ux uxy –2 k0 u = 0 (13) uxy 0 = –k0 (2x + 2y ) (28) 

uy uxy –2 k0 u = 0 (14) uxt 0 = –2 k0 x (29) 

ux uxt –2 k0 u = 0 (15) uyt 0 = –2 k0 y (30) 

 

The requirement for (15), (16), (29) and (30) is that 

 be a function of t. The equations (9), (10), (11), 

(12), (13) and (14) shown that  and  are 

independent of u. From equation (17) and (18)  = 

 1 2 x t + (y, t) and  =  1 2 y t + (x, t) where  

 and  are arbitrary functions. The equation (4) 

and (5) shown that  is linear in u so (x, y, t, u) = 

(x, y, t) u + (x, y, t) for certain function  and . 

The equation (2) and (3) gives x = –  01 2 k t and 

y = -  01 2 k t which is implies  = –  01 8 k  (x2 

+ y2) tt –  01 2 k (x t + y t ) + (t) where  is 

only function of t. The equation (1) requires that 

both  and  are the solutions of (2.1), i.e., t = k0 

(xx + yy ) and t = k0 (xx + yy ). Using the 

determining equation of  we found that –  01 8 k  

(x2 + y2) ttt –  01 2 k (x tt + y tt ) + t = – 

 01 2 k tt  which gives us   = c1 + c6 2t + c7 4t2 , 

 = c8 2t + (y),  = c9 2t + (x) and  = – c7 4t + 

c4. The equation (28) gives y = x which implies  

= c3 – c5 x  and  = c2 + c5 y . Since all the 

determining equations are satisfied. The most 

general infinitesimal symmetry of (2.1) has 

coefficient functions of the form  = c2 + c6 x + c5 y 

+ c8 2t + c7 4xt,  = c3 – c5 x + c6 y + c9 2t + c7 4yt, 

 = c1 + c6 2t + c7 4t2 and  = [c4 – (1/k0){(c8 x + c9 

y) + c7 (x2 + y2 + 4k0 t)}] u + (x, y, t) where 

c1,…,c9 are arbitrary constants and (x, y, t) is an 

arbitrary solution of (2.1). The Lie algebras of 

infinitesimal symmetries of (2.1) is spanned by the 

nine vector field    v1 = t ,  v2 = x ,  v3 = y 

, v4 = uu , v5 = yx - xy ,  v6 = xx + yy + 2tt 

,v7 = 4t (xx + yy) + 2t2 t – ((x2 + y2 + 4k0 t)/k0) 

uu , v8 = 2t x + (-1/k0) xuu ,  v9 = 2t y + (-1/k0) 

yuu ,and the infinite-dimensional sub algebra v  = 

(x, y, t)u, where  is an arbitrary solution of 

(2.1).  
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The commutation table gives the commutation relations between these vector fields as follows. 

Table 2: The Commutation Relation Table 

 

           

v v v v v v v v v v

v v v v v v v

v v v v v k v

v v v v v k v

v v

v v v v v v

v v v v v v v v

v v v v v v v

v

t

x

y

1 2 3 4 5 6 7 8 9

1 1 6 4 2 3

2 3 2 8 4 0

3 2 3 9 4 0

4

5 3 2 9 8

6 1 2 3 7 8 9

7 6 4 8 9 7

0 0 0 0 0 2 4( ) 2 2

0 0 0 0 2 0

0 0 0 0 2 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0

2 0 0 0 2

4( ) 2 2 0 0 2 0 0 0
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Where  = yx - xy ,  = xx +yy +2tt ,3 = 

4t (xx + yy +tt ),  =(2tx +(x/k0)),  = 

(2ty + (y/k0) ). The one - parameter groups Gi 

generated by the vi are given as follows 

 

G1: (x, y, t + , u), G2: (x + , y, t, u), G3: (x, 

y + , t, u), G4: (x, y, t, eu), 

G5: (x cos + y sin, y cos - x sin, t, u), G6: (e 

x, e y, e2 t, u), 

G7: ,
1 4

x

t





,
1 4

y

t
,

1 4

t

t
 1 4u t  

 
 

2 2

0

exp
1 4

x y

k t





  
 

  
 

 

G8: (x +2t, y, t, u.exp(-(x + t) / k0)),  G9: (x, 

y +2t, t, u.exp(-(y + t) / k0)), 

G: (x, y, t, u + (x, y, t)) where each group Gi is 

a symmetry group.  

 

If we take u = f (x, y, t) be a solution of (2.1), then 

the functions 

 

u(1) = f (x, y, t - ),  u(2) = f (x - , y, t),  u(3) = f 

(x, y - , t),  u(4) = e f (x, y, t), 

u(5) = f (x cos - y sin, y cos + x sin, t), u(6) = f 

(e x, e y, e t), u(7) = 

 

1

1 4 t

 
 

2 2

0

exp
1 4

x y

k t





  
 
 
 

, ,
1 4 1 4 1 4

x y t
f

t t t  

 
 
   

 

 

u(8) = exp((-x + t) / k0). f (x - 2t, y, t), u(9) = 

exp((-y + t) / k0). f (x, y - 2t, t), u() = f (x, y, t)  

+  (x, y, t), are any other solutions of (2.1), where 

 is any real number and (x, y, t) any other 

solution to (2.1). At the end the most general 

solution of (2.1) obtained from a given solution u = 

f(x, y, t), by group transformations is in the form 

given below 

 

u=
 7

1

1 4 t

 

     
 

2 2 2 2

8 8 0 9 9 0 7 7

4

0 7

exp
1 4

x t k y t k x y

k t
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cos 2
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1 4
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1

7

,
1 4

e t
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+ 

(x, y, t)                    (2.5) 

where ,..., are real constants and  an arbitrary 

solution of (2.1).   

 

3. Conclusion: 
 

In our investigation the symmetry groups G4 and 

G reflect the linearity of (2.1). The groups G2, G3 
and G1 are the time and space invariance of the 

equation respectively, and reflect the fact that (2.1) 

has constant coefficients. The group G6 is well 

known scaling symmetry group. The group G8 and 

G9 represent a kind of Galilean boost to a moving 

coordinate frame. The group G5 is well known 

rotational symmetry group. The group G7 is a 

genuinely local group of transformations and if u = 

c be a constant solution then the function  

 

 

 

u  t exp x y k t     ( ) ( ( ) ( ))0c 1 4 1 42 2    

be a solution. The most general solution (2.5) gives 

us all possible most general infinitesimal symmetry 

of (2.1). The fundamental solution of (2.1) be 

obtained by substituting c    , at the point (x0, 

y0, t0) = (0, 0, (-1/4)). Now, by translating the 

above solution in t using G1, with  replaced by -

1/4, we get the fundamental solution of the 

problem in the form 

u  t exp x y k t   ( ) ( ( ) )01 4 42 2 . 

4. Special Cases: 

 

(1) Letting y  0, in (2.1), we get a known result 

of  [2] in the form  
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 7

1

1 4 t
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+ (x, t)  (4.1) 

which is a solution of the heat conduction equation 

in one dimension having the constant thermal 

diffusivity k0 , where ,...,are real constants and 

 an arbitrary solution to the Heat equation.    

 

(2) Letting y  0 and k0 = 1 in (2.1), we get a 

known result of [7] in the form  

u =
 7

1

1 4 t  

2 2

8 8 7
4
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exp
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x t x
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,
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+ (x, t)    (4.2) 

 

which is a solution of the heat conduction equation 

in one dimension, where ,...,are real constants 

and  an arbitrary solution to the Heat equation.  
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