
Development of Load balancing solution for

Real-Time Communication services over

AWS
Anjana Sangwan#1, Dr. Rashid Hussain#2

#1,2Suresh Gyan Vihar Univercity,Jaipur,India

Address
1sangwan.anjana@gmail.com

2rashid.hussain@mygyanvihar.com

Abstract— The Cloud trend has gained remarkable prominence
in the tech industry as well as in the field of science in recent
years. The most important facet of cloud computing is the on-
demand application provisioning paradigm. From the point of
view of the cloud customer. This helps Cloud service services to
be updated in order to accommodate more new users and to
expand while the network has insufficient capacity. The effect is
a more effective use of physical system and a cost-saving Cloud
system. It is the most up-to-date and common IT and analysis
technology with its high features like virtualization and on-
demand (dynamic) allocation of resources. To have a stable
service for customers with QOS the load balancing mechanism
in cloud environments is necessary and an auto-scaling function
must also be implemented in conjunction with the application
and incoming user distribution in order to prevent overloading
and crashing of the network.

Keywords— Cloud, Resources, Client, Virtualization, Load

Balancing, Overloading

I. INTRODUCTION

 The load balancing function allows load distribution

among one or more cloud systems nodes, allowing the load

balancer also to manage the excess load in an efficient

service model auto-scaling feature. Auto scaling has

dynamically increased and reduced the network, saving

money and physical resources according to the customers

entering traffic[1]. Latency-based routing is the latest cloud

computing idea, which provides load balancing for the

global customer based on DNS latency by mapping the

domain name system (DNS) across the different host zones.

We use public cloud services like Amazons' EC2 in order to

achieve the above described. ELB.-ELB. This work is

divided into four sections: auto scaling, load balancing,

latency routing and resource surveillance. In a simple

design, a load balancer or elastic load balancer is used for

web servers, which distributes traffic between them. This

ensures that the application remains accessible when one of

the servers is not functional, the Load Balancer recognizes

it and prevents the delivery of traffic to the safe instance [2]

 Types of Amazon Elastic Load Balancing

As a result, Elastic Load Balancing distributes traffic

inbound applications through various destinations

automatically, such as Amazon EC2 instances, containers,

and IP addresses [3, 4]. In a single area or in many areas,

you can manage the variable load of your application

traffic. Elastic Load Balancing provides three load

balancing types. These are available, automatically scaled

and have robust protection. Everything you need to accept

the failure of your applications.

Balancing Elastic load supports three load anchor

forms. Load balancers, load balancers network, and classic

load balancers program. A load balancer can be selected

according to the requirements of your app. In the

application layer, the 7th layer of the Open Systems

Interconnection Model (OSI), an Application on Load

Balancer (ALB) operates. The Load Balancers support

content-based and container-based applications [5].

Benefit of AWS Load balancer: for the Amazon, the

definition of regions reveals sets of data centers (not just

one) that run in union with each other. Amazon has many

regions all over the world. There are 20 regions today. The

available areas are composed of every zone. A high-tech

Data Processing Center with high speed connectivity and a

low latency to the rest of the available zones has a similar

coverage area [6]. With which services can be built in a

country, and the resources we need are available in

different places to avoid a reduction in service.

Load balance: AWS has different tools, but load

balancers are the most important. The Classic version

(kept for previous Balancers only), HTTP (for web server

requests) and TCP (to balance any resource) only exist, in

three types [7].

Elasticity: There are several con-traits in the AWS

case. Firstly, the Cloud Watch Service controls resources.

There is a default version, which takes data every 5

minutes and a paid version which takes data every minute,

which is capable of performing tasks, creating

notifications or changing AWS. The second is that

Amazon's management does not have all the tools that are

special. They have been aimed at elastic resources,[8] that

is to say, we don't build a balance, but we do make an ELB

mailto:1sangwan.anjana@gmail.com
mailto:2rashid.hussain@mygyanvihar.com

•

(Elastic Load Balancer): it increases according to load to

accommodate all traffic. Therefore, we can build

notifications that require instances to start or stop based on

traffic, processing and so on.

Simplicity: A large number of services, such as RDS (Re-

lational Databas Service), allow us to ignore the

configuration of the physical machine in favor of being able

to manage only the database without needing to know

anything else. We can optimize the database, create copies in

other availability zones or make backups in the famous S3

bucket [9].

Fig. 1. 01 AWS Load Balancer Configuration

2. Accepted protocols in Amazon Elastic Load

Balancing

They endorse many mainstream industry protocols

(WebSocket and HTTP 2). They also give additional views

of the status and containment of objective instances. The

benefits of websites and mobile phones in containers or

EC2 cases. This is suitable for advanced load balancing of

HTTP and HTTPS traffic with managed application load

balancer service. It routing supports modern application

architecture, including micro services and applications

built on containers[10], in advanced request routing. The

Network Load Balancer (NLB) is the other al-ternouncer

to deal with tens of millions of requests per second. At a

very low latency, it retains high efficiency without any

effort. Accepting incoming customer traffic and spreading

the traffic within the Availability Zone. Routing of link to

destinations: the Amazon EC2 instances, the containers, IP

adresses based on IP protocol data. The network is load

balancer based at the interface (Layer 4). The Load

Balancer Network supports the Balancer API User Load.

This provides complete programmatic control of target

group and destination. The Load Balancer Network is ideal

for managing TCP traffic load. With extremely low

latency, NLB is able to process millions of requests per

second. NLB is designed to manage traffic conditions that

are abrupt and unpredictable. Availability zone uses only

one static IP address[11,12].

2.1 Amazon Elastic Load Balancing in legacy mode

Classical Load Balancer (CLB) for multiple Amazon EC2

instances that offers simple load balance and operates both at

the request level and the link level. For applications built on

the EC2-Classic network an ancient network alternative is

planned that is no longer being used, so this choice is not

recommended even when applications built in the EC2-

Classic network are still in use [13,14].

3. MONGODB LOAD BALANCING ACROSS MULTIPLE

AWS INSTANCES

Amazon web service for a commercial application that uses

the node.js server and mongodb as the database. Currently the

node.js server is running on a middle EC2 instance. And keep

our mongodb database in a separate micro instance. Now we

want to deploy a set of replicas to our mongodb database, so

if the mongodb crashes or cannot be enabled then we can still

run our database and get data from it. So to keep each

member of the replica set in separate instances, so that we can

fetch data from the database even if the instance of the main

memeber goes down[15]. Now, want to add the load balancer

to the database, so that the database works well even with

high traffic load at once. In that case, I can read the balance

of the database by adding the slave OK configuration in the

replica set[16]. But it will not balance the load on the

database if there is a high traffic load for the write operation

on the database.

3.1 To solve this problem, two options so far.

1: Copy the database and keep each fragment in a separate

instance. And under each fragment there will be a

reapplication set in the same instance. But there is a problem,

since the fragment divides the database into several parts, so

each fragment will not save the same data within it. So if an

instance goes down, we won't be able to access the fragment

data within that instance. To solve this problem, I try to

divide the database into fragments and each fragment will

have a set of replicas in separate instances. So even if an

instance goes down, we won't face any problems. But if we

have 2 shards and each shard has 3 members in the replica set

then I need 6 Aws instances. So I think it is not the optimal

solution[17,18].

2. We can create a master-master configuration in mongodb

that means the entire database will be primary and everyone

will have read / write access, but I would also like to auto-

sync every so often, so everyone they end up being clones of

each other. And all of these primary databases will be in a

separate instance[19].

4. Implementation of Load balancing

4.1 Load balancing with auto-scaling

In the Load Balancing menu there is a Load Balancers option.

In there you must choosethe button create load balancer once

inside the assistant is displayed to create letter balancers. You

can select between Application Load Balancer and Classic

Load Balancer[20]. For our case we are going to use Classic

Load Balancer.

Figure: 02: Types of load balancing.

Then you must select a name for the load balancer and also

the ports with their protocols to be used.

Figure 03: Ports for configuration of load balancer

In the next step you need to add the load balancer to the

security group that was created earlier. Or you can create a

new group if you want, but you need to have access to the

same ports (1935, 80, and 8080).

Figure: 04 Safety groups for load balancing.

You can also select the already created instance directly to

the load balancer. If necessary, more instances can be

added.

Figure: 05: Add instances directly to the load balancer.

In order to provide a better service that adjusts to the load of

the users and allows lower costs using only the resources that

are needed, self-escalation policies must be established [21].

4.2 Auto escalation groups

To create an auto scaling group it is necessary to go to the

Auto Scaling menu and select Auto Scaling Groups. Inside is

the button create launch configuration. Clicking on that

button should select it in themenu on the left where it says

My AMIs[22] where the created images will be.

Figure 06: Create Launch Configuration window, My AMIs option.

And then you need to select the type of instance to use, you

should use at least one instance similar or with better

requirements than the one we use to create the image.Then it

is necessary to create self-escalation policies.

Figure 08: Auto escalation policies

 You can choose the CPU or RAM saturation for when to

create a new instance and how long the instance is

deprecated to shut it down[23].

4.3 Load Computation

Load in Amazon Web Services can vary according to the area

and not all types of instances serve everything.

Instance

Type

Software EC2 Total

m1.large $ 0.23 / hr $ 0.175 / hr $ 0.405 / hr

m1.xlarge $ 0.970 / hr $ 0.350 / hr $ 1.320 / hr

m2.xlarge $ 0.230 / hr $ 0.2450 / hr $ 0.4750 / hr

m2.2xlarge $ 3.760 / hr $ 0.490 / hr $ 4.250 / hr

m2.4xlarge $ 3.760 / hr $ 0.980 / hr $ 4.740/ hr

m3.large $ 0.230 / hr $ 0.1330 / hr $ 0.3630/ hr

m3.xlarge $ 0.460 / hr $ 0.2660 / hr $ 0.7260 / hr

c1.xlarge $ 0.890 / hr $ 0.520 / hr $ 1.410 / hr

Conclusions

This work focused on the solution by the server to obtain a

high availability solution achieved the general objective of

studying the load balancing of a free software system for

high availability streaming using cluster with Red5 in the

cloud with Amazon Web Services (AWS). Implementation

of the proposal is the main contribution of this work due to

the adaptations that had to be made and that leave the way

open for new research. It is possible to create a high

availability streaming with high speed with JBoss clusters

with Red5 that can be applied for video and audio essentially

although it could be used for more complex programs that

use real time. In this sense, for subsequent studies, the client

side could be considered, which will surely enrich the

solutions when carrying out their own projects, because of

the topic discussed, it is open for further study.

 References

[1.] Pradhan P, Behera PK, Ray BNB (2016) Modified round

Robin algorithm for resource allocation in cloud

computing. Proced Comp Sci 85:878–890

[2.] Mishra SK, Sahoo B, Parida PP (2018) Load balancing in

cloud computing: a big picture. J King Saud Univ Comp

Infor Sci:1–32

[3.] Reddy VK, Rao BT, Reddy LSS (2011) Research issues in

cloud computing. Glob J Comp Sci Technol 11(11):70–76

[4.] Bohn RB, Messina J, Liu F, Tong J, Mao J (2011) NIST

cloud computing reference architecture. In: Proceedings of

IEEE 7th world congress on services (SERVICES’11),

Washington, DC, USA, Jul. 2011, pp 594–596

[5.] Bokhari MU, Shallal QM, Tamandani YK (2016, March)

Cloud computing service models: a comparative study. In:

3rd international conference on computing for sustainable

global development (INDIACom), 16–18, March 2016, pp

890–895

[6.] Mahmood Z (2011, August) Cloud computing:

characteristics and deployment approaches. In: 2011 IEEE

11th international conference on Computer and

Information Technology (CIT), pp 121–126

[7.] Buyya R, Vecchiola C, Selvi ST (2013) Mastering cloud

computing: foundations and applications programming.

Morgan Kaufmann, USA, 2013

[8.] Jain N, Choudhary S (2016, March) Overview of

virtualization in cloud computing. In: Symposium on

colossal data analysis and networking (CDAN), pp 1–4

[9.] Alouane M, El Bakkali H (2016, May) Virtualization in

cloud computing: no hype vs HyperWall new approach. In:

2016 International Conference on Electrical and

Information Technologies (ICEIT), pp 49–54

[10.] Rimal BP, Choi E, Lumb I (2009, August) A taxonomy

and survey of cloud computing systems. In: Fifth

international joint conference on INC, IMS and IDC, 2009.

NCM’09, pp 44–51

[11.] Afzal S, Kavitha G (2018, December) Optimization of

task migration cost in infrastructure cloud computing

using IMDLB algorithm. In: 2018 International

Conference on Circuits and Systems in Digital Enterprise

Technology (ICCSDET), pp 1–6

[12.] Achar R, Thilagam PS, Soans N, Vikyath PV, Rao S,

Vijeth AM (2013, December) Load balancing in cloud

based on live migration of virtual machines. In: 2013

annual IEEE India Conference (INDICON), pp 1–5

[13.] Magalhães D, Calheiros RN, Buyya R, Gomes DG (2015)

Workload modeling for resource usage analysis and

simulation in cloud computing. Comp Elect Eng 47:69–81

[14.] Dam S, Mandal G, Dasgupta K, Dutta P (2015, February)

Genetic algorithm and gravitational emulation based

hybrid load balancing strategy in cloud computing. In:

Proceedings of the 2015 third international conference on

computer, communication, control and information

technology (C3IT), pp 1–7

[15.] Dave A, Patel B, Bhatt G (2016, October) Load balancing

in cloud computing using optimization techniques: a study.

In: International Conference on Communication and

Electronics Systems (ICCES), pp 1–6

[16.] Gupta H, Sahu K (2014) Honey bee behavior based load

balancing of tasks in cloud computing. Int J Sci Res 3(6)

[17.] Mishra SK, Puthal D, Sahoo B, Jena SK, Obaidat MS

(2017) An adaptive task allocation technique for green

cloud computing. J Supercomp 405:1–16

[18.] Ibrahim AH, Faheem HEDM, Mahdy YB, Hedar AR

(2016) Resource allocation algorithm for GPUs in a

private cloud. Int J Cloud Comp 5(1–2):45–56

[19.] Jebalia M, Ben Letafa A, Hamdi M, Tabbane S (2015) An

overview on coalitional game-theoretic approaches for

resource allocation in cloud computing architectures. Int J

Cloud Comp 4(1):63–77

[20.] Noshy M, Ibrahim A, Ali HA (2018) Optimization of live

virtual machine migration in cloud computing: a survey

and future directions. J Netw Comput Appl:1–10

[21.] Gkatzikis L, Koutsopoulos I (2013) Migrate or not?

Exploiting dynamic task migration in mobile cloud

computing systems. IEEE Wirel Commun 20(3):24–32

[22.] Jamshidi P, Ahmad A, Pahl C (2013) Cloud migration

research: a systematic review. IEEE Trans Cloud Comp

1(2):142–157

[23.] Kanakala VR, Reddy VK, Karthik K (2015, March)

Performance analysis of load balancing techniques in

cloud computing environment. In: 2015 IEEE

International Conference on Electrical, Computer and

Communication Technologies (ICECCT), pp 1–6

