<u>Review Article</u> SGVU Journal of Pharmaceutical Research & Education

Journal homepage: http://www.gyanvihar.org/researchjournals/

Green Chemistry and Synthesis of Anticancer Molecules: A Review

Sushama Rawat*, Deepa Singh, Shaneza Aman

GyanVihar School of Pharmacy, SGVU

ABSTRACT:

Green chemistry is a modern area of chemistry merged with chemical engineering methods. It highlighted the synthesis of molecules in a manner of using environment-friendly chemical reagents with low waste material for enhancing environmental performance which reduce the formation of hazard substances. Modern researches are trying to reduce the risk of human kind health and the environment of our world by doing magnificent work in the field of green chemistry. In the pharmaceutical field, green chemistry works very well with the formation of many drugs and it utilizes non-hazards, reproducible and environment-friendly solvents with low time and money costs by using catalyst, microwave, ultrasonic, solid phase and solvent-free synthesis. Until now, scientist has synthesized many anticancer molecules by using these modern green chemistry techniques. These compounds showed significant anticancer activities against many human cancer cell lines. This review paper will cover different views and the recently published literature to summarize the role of green chemistry in the synthesis of anticancer compounds.

Keywords: Green synthetic approaches, anticancer activity, synthesis of active molecules, cancer cell lines

INTRODUCTION:

Green chemistry is a modern way for the synthesis of organic compounds and designed different drugs under facile protocols, efficient conditions, environmentally benign and high yielding method of molecules with advantages over traditional organic synthetic methods. It usually reduces waste by-products, costs and develops environmentally friendly procedures.

Method use	Reaction condition	Class of compounds synthesized	Cancer cell lines	Refs.
Eco-	Mixture of methyl ketone, aldehyde, active	Novel	Human	[1]
friendly	methylene cyanoacetamide, malononitrile,	cyanopyridin	liver	

Table:1. Green synthesis of anti-cancer molecules

		1		
one-pot	ethylcyanoacetate and 2 mL of	e derivatives	HepG2,	
synthesis	glycol/ammonium acetate was added to the		colon	
	reaction vessel and placed into MW reactor		HCT-	
	then allowed to react under MW irradiation at		116,	
	200–400 W power and 120°C for 6–8 min. The		breast	
	compound was collected by filtration and		MCF-7	
	recrystallized from ethanol/DMF to give pure		cancer	
	amino-cyanopyridine and oxo-cyanopyridine			
	derivatives			
Microwa	A mixture consisting of methyl salicylate and	Salicyloyloxy	Human	[2]
ve-	sodium was heated to 110°C When the	and 2-	breast	[-]
assisted	reaction with sodium was completed after 5–10	methoxybenz	adenocar	
synthesis	min mixture was irradiated for 30 min at 160	ovlovy	cinoma	
synthesis	200°C using a 200 W MW source	oyloxy		
	200 C using a 200 w MW source.	and	ENŦ, MCE 7	
	Chromatographic separation of crude mixture		IVICF-/,	
	on silica gel column gave the pure products	stigmastane	estrogen	
		derivatives	receptor	
			negative	
			breast	
			adenocar	
			cinoma	
			ER+,	
			MDA-	
			MB-231,	
			prostate	
			cancer	
			PC-3 and	
			normal	
			fetal lung	
			fibroblas	
			ts MRC-	
			5 cancer	
One-pot	Reaction of 2-chloro-3-chloromethyl-quinoline	Quinoline	Human	[3]
synthesis	with terminal alkyne in the presence of KI	triazole and	$\Delta 5/10$	[~]
synthesis	NaN3 and precatalyst copper(II)sulfate in	dibydroquino	lung	
	approximation with Na accordate was averaged	lino	adamasar	
	combination with Na-ascorbate was examined	ime	adenocar	
	in water at room temperature			
			epithelial	
			, MCF-7	
			breast	
			adenocar	
			cinoma,	
			HepG2	

			hepatoce	
			llular	
			liver	
			carcinom	
			a,	
			DU145	
			prostate	
			cancer	
Microwa	Ethyl/methyl acetoacetate and an aldehyde	4-alkyl/aryl-	Human	[4]
ve-	were taken into a beaker and dissolved in	3,5-	HT-29	
assisted	minimum quantity of dimethylformamide. To	bis(carboetho	colon	
synthesis	this solution, ammonium acetate was added.	xy/	cancer	
	Reaction mixture was subjected to microwave	carbomethox	and	
	irradiation at 480 W for 2–6 min, with a pulse	y)-1,4-	MDA-	
	rate of 60 s each in a microwave oven. After	dihydro-2,6-	MB	
	completion of the reaction on TLC, the	imethylpyridi	breast	
	resultant product was filtered, washed with	nes	cancer	
	chill water and recrystallized		and	
			MRP1	
			inhibitor	
			y activity	
			using the	
			insect	
			cell	
			membran	
			e	
Cellulose	4-hydroxybenzaldehyde treated with propargyl	Chalcone-	Human	[5]
-	bromide in the presence of K2CO3 in dry	linked 1,2,3-	MCF-7,	
supporte	acetone under reflux to yield 4-O-	triazoles	MIA-Pa-	
d copper	propargylated benzaldehyde. In the next step,		Ca2,A54	
nanoparti	4-O-propargylated benzaldehyde was reacted		9,	
clecataly	with substituted acetophenones via base-		HepG2	
zed click	catalyzed ClaisenSchmidt condensation to yield		cancer	
reaction	chalcones			
in water				
Copper-	Functionalized pyrazolopyridine derivatives via	Novel	Human	[6]
mediated	copper-promoted cyclization of pyridyl acetates	pyrazolo,	A549	
synthesis	and benzonitriles in DMSO under argon	pyridine	lung	
	atmosphere, converted to corresponding	derivatives	adenocar	
	pyrazolo[1, 5-a]pyridines from commercially		cinoma,	
	available aromatic nitriles and various pyridyl		MCF-7	
	acetates		breast	
			carcinom	

			a cell	
			line	
			HCT-	
			116	
			colon	
			cancer.	
			PC-3	
			prostate	
			cancer	
Microwa	Ouinolone derivatives were synthesized by	Pyrazolo[4,3-	Human	[7]
ve	reacting 2,3-dihydro-8-nitro-4-quinolones with	c] quinoline	MCF-7	
condition	aromatic aldehydes by pyrrolidine base-	(5a-i, 7a-b)	breast	
S	catalyzed condensation reaction and were	and	and	
	treated with hydrazine derivatives under MW	pyrano[3,2-c]	A549	
	condition, which afforded pyrazolo quinoline	quinoline	lung	
	derivatives in high yields	derivatives	cancer	
Facile	Synthetic route to barbituric acid derivatives	Pvrimidine-	HeLa	[8]
protocol.	substituted at C5-position. Addition of	2.4.6-trione	cervical	[-]
efficient	barbituric acid analogous into nitrostyrene, in	derivatives	cancer	
and	water mediated by diethylamine as base gave		.3T3	
environ	the target 5-monoalkylbarbiturates in excellent		mouse	
mentally	vield		fibroblas	
benign			t cancer	
Simple,	In the presence of NaOH in ethanol, Claisen-	α,β-	PC12	[9]
eco-	Schmidt condensation was used to synthesize	unsaturated	cancer	
friendly	α,β -unsaturated carbonyl-based compounds	carbonyl-		
and	between specific ketones and appropriate aryl	based		
efficient	aldehydes.	compounds		
method				
Synthesi	In EtOAc 2,3-Dihydrophthalazine-1,4-dione,	Phthalazine-	Human	[10]
s by	5,5-dimethyl clohexane-1,3-dione, aldehyde	triones:	tumor	
using	and calix p-sulfonic acid[4]arene have been	Calix[4]arene	U251	
green	dissolved. The mixture was irradiated at 130 °		glioma,	
solvents	C for 10 minutes in an MW reactor. This		MCF7	
	cooled the reaction to room temperature and		breast	
	then added heat. The mixture was put to shape		NCIAD	
	the material in a freezer at 20 $^{\circ}$ C		R / RES	
			multiple	
			drug-	
			resistant	
			ovarian,	
			786-0	
			renal,	

			NCIH46	
			0 lung,	
			non-	
			small	
			cells,	
			prostate	
			PC-3,	
			ovarian	
			OVCAR	
			-03,	
			colon	
			HT-29	
			and	
			leukemia	
			cancer	
			K562	
One-pot	For 30 minutes, the 2-thioxoimidazolidin-4-one	Novel 2-	MCF-7	[11]
reaction	and sodium ethoxide mixture in EtOH was	thioxoimidaz	breast	
	refluxed. CS2 was introduced after cooling and	olidin-4-one	carcinom	
	the reaction mixture was stirred for 1 h at room	and	a cancer	
	temperature. The solid material was	benzothiazole		
	recrystallized from EtOH after solution	thiolate salts		
	evaporation to achieve a compound yield of			
	70–75 percent			
One-pot	One-pot synthesis of 5-amino-2-(4-	5-amino-2-	MCF-7,	[12]
ultrasoun	chlorophenyl)- 7-replaced phenyl-8,8a-	(4-	K562,	
dpromot	dihydro-7H-3,4) thiadiazolo(3,2-α)pyrimidine-	chlorophenyl	HeLa	
ed	6-carbonitrile derivatives from three)- 7-	and PC-3	
synthesis	component reactions of 5-(4-chlorophenyl)-	substituted	cancer	
	1,3,4-thiadiazol-2 amine, aromatic aldehydes	phenyl-		
	and malonitrile in the presence of NaOH under	8,8adihydro-		
	reflux and ultrasonic irradiation	7H-		
		(1,3,4)thiadia		
		zolo (3,2-		
		α)pyrimidine-		
		6-carbonitrile		
		derivatives		

This chemistry includes a range of modern techniques for synthesizing bioactive compounds, such as microwave-assisted synthesis, solvent-free synthesis aided by solid phase, organocatalyst reaction, multi-component one-pot reactions, and sonochemical synthesis, using ionic liquid techniques. Pharmaceutical companies also develop chemicals in order to reduce and mitigate environmental hazards. Cancer is a disease caused by uncontrolled

growth of the body's cells. There are many developments in treating cancer, but the most common cause of human death remains. There is a significant increase in the number of cancer patients worldwide, particularly in developed countries. In 2014, global spending on cancer medicines increased by 10.3% to \$100 billion, according to the global oncology trend report (2015).

Green Synthesis of Various Anticancer Molecules

Green chemistry is one of the valuable concepts for developing new, more effective, solventfree methods that are less toxic, environmentally friendly and cost-effective for the synthesis of different anticancer molecules. There are many advances in environmentally friendly approaches to the synthesis of biologically active molecules.

2.1. Green Chemistry and Synthesis of Anticancer Molecules

One-pot synthesis of 3-cyano-pyridine derivatives Novel series of 3-cyano-pyridine type derivatives have been synthesized and their cytotoxic activity has been assessed against many human cancer cell lines MCF-7,HCT-116 and HepG-2. Most of the compounds exhibited good-to-moderate activity against cell lines HepG2 and HCT-116, while few compounds were identified (Figure 1). ⁽¹⁾

Figure-1. 3-Cyano pyridine derivatives

2.2. Microwave-assisted solvent-free synthesis of stigmastane derivatives

The microwave-assisted synthesis in most cases was more successful regarding to the reaction time and the yields of product. These reactions are more environmentally friendly too, compared to the conventional synthetic methods. In this research, a convenient simple microwave-assisted solvent-free synthesis of 2-methoxybenzoyloxy androstane, salicyloyloxy stigmastane derivatives from methyl salicylate and appropriate steroidal precursors has done. 2-Methoxybenzoyl ester exhibited significant cytotoxic activity against MDA-MB-231 cells. Most of the compounds strongly inhibited growth of PC-3 cells, whereas salicyloyloxy stigmastane derivative showed the best inhibition potency².

Figure-2. Synthesis of stigmastane derivatives

2.3. One-pot synthesis of polyazaheterocycles in water

Synthesis of these polyazaheterocycles was carried out by green synthetic strategy that involved one-pot azidation and CuAAC under mild conditions in water. Many compounds were synthesized and evaluated for their cytotoxic effects against four human cancer cell lines, including A549 (lung), MCF-7 (breast), HepG2 (hepatocellular) and DU145 (prostate). Some of the compounds showed strong activities against A549 cancer cells.⁽³⁾

Figure-3. Synthesis of polyazaheterocycles

2.4. Microwave irradiated one-pot synthesis of carboethoxy/carbomethoxy derivatives Fourteen carboethoxy/carbomethoxy derivatives have been synthesized by conventional and microwave irradiation method from a one-pot three-component reaction mixture, consisting of, alkyl acetoacetate, aldehyde and ammonium acetate. The synthesized products have been evaluated for their cytotoxic activity against MDA-MB (breast) and HT-29 (colon) human cancer cell lines. Few compounds exhibit some degree of cytotoxicity and it was low when compared with standard.⁽⁴⁾

Figure-4. Synthesis of carboethoxy/carbomethoxy derivatives

2.5. Cellulose-supported copper nanoparticle

Catalyzed synthesis of chalcone derivatives Chalcone-linked 1,2,3-triazole derivatives were synthesized in water by cellulose-supported copper nanoparticle-catalyzed click reaction. All the products were subjected to MTT cytotoxicity assay against four human cancer cell lines A549, MCF-7, HepG2 and MIA-Pa-Ca-2 for testing their anticancer potential. Few compounds were found to be most active against all cancer cell lines and showed better activity when compared to reference drug.⁽⁵⁾

Figure-5. Synthesis of chalcone derivatives

2.6. Copper-mediated synthesis of pyrazolo pyridine derivatives

Some novel pyrazolo pyridine type compounds were synthesized by facile procedures and showed significant cytotoxic potential on different human cancer cell lines. They revealed various cancer cell lines (HCT-116, A549, MCF-7, PC-3) determined by SRB assay.⁽⁶⁾

Figure-6. Synthesis of pyridine derivatives.

2.7. Microwave-assisted synthesis of quinoline analogues

A new class of pyrazolo[4,3-c]quinoline and pyrano[3,2-c]quinoline analogues was synthesized in good yields by microwave conditions. For enhancing the yield of products, multicomponent one-pot synthesis has been developed. The cytotoxicity of these compounds was also evaluated against MCF-7 and A549 cancer cell lines. Most of the compounds

displayed moderate-to-good anticancer activity against these cell lines.⁽⁷⁾

Figure-7. Synthesis of quinoline analogues.

2.8. Facile protocol, efficient and environmentally benign synthesis of cycloheximide In this research, they describe a facile and efficient protocol and environmentally benign for the synthesis of C5-substituted barbiturate acid in water. The synthesized compounds tested for different assay and provided promising results against a-glucosidase inhibitor. The cytotoxic activity of compound against 3T3 cell resulted that compounds showed significant to weak activity against the standard cycloheximide. ⁽⁸⁾

Figure-8. Synthesis of quinoline cycloheximide.

2.9. Simple, eco-friendly and efficient synthesis of α , β -unsaturated carbonyl compounds A novel series of carbonyl compounds was synthesized by environment-friendly, simple and efficient method. Compounds were tested for cytotoxicity. All strong antioxidant compounds showed strong protective effect against PC12 cell line.⁽⁹⁾

Figure-9. Synthesis of α,β-unsaturated carbonyl-based compounds

2.10. Green methodology synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives An efficient green method was used for the synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives. Many compounds were obtained in good yields within 10 min. Among all tested cell lines, K562 leukemia cell line was most sensitive (Figure 10). ⁽¹⁰⁾

Figure-10. Synthesis of phthalazine-trione derivatives

2.11. Green synthesis of thioxoimidazolidin and benzothiazole derivatives

A series of 2-thioxoimidazolidin-4-one and benzothiazole thioglycosides were synthesized by one-pot reaction. Compound cytotoxic activity was measured against breast cell MCF-7 and high-to-moderate anticancer activity was shown (Figure 11).⁽¹¹⁾

2.12. Green synthesis of pyrimidine-6-carbonitrile derivatives

This is a natural synthetic solution for phenyl-8,8a-dihydro-7H-(1,3,4)thiadiazolo(3,2- α) pyrimidine-6-carbonitrile-substituted antitumor 5-amino-2-(4-chlorophenyl)-7. This protocol can be applied to a wide range of substrates. The benefits are eco-friendly catalyst use, reduced time, quick system work-up, fast insulation and high material yield.

One compound was found to have the highest GI50 value for PC-3, HeLa, K562 and MCF-7 cancer cell lines. $^{(12)}$

Figure-12. Synthesis of pyrimidine-6-carbonitrile derivatives.

CONCLUSION

The data from this review could be very helpful in identifying the recently published anticancer molecules approaches synthesized through various approaches to green chemistry.

REFERENCES

- 1. Khaled AMA, Ghada HA, Abeer ME. Eco-friendly synthesis of novel cyanopyridine derivatives and their anticancer and PIM-1 kinase inhibitory activities. European Journal of Medicinal Chemistry 2017;134:357-365.
- 2. Katarina MPG, Evgenija AD, Mihaly S, Janos G, Janos JC. Microwave assisted synthesis and biomedical potency of salicyloyloxy and 2-methoxybenzoyloxy androstane and stigmastane derivatives. Steroids 2015;94:31-40.
- Koduru SSP, Edupuganti VVSR. Design of new hybrid template by linking quinoline, triazole and dihydroquinoline pharmacophoric groups: A greener approach to novel polyazaheterocycles as cytotoxic agents. Bioorganic & Medicinal Chemistry Letters 2015;25:1057-1063.
- 4. Srinivas NA, Mahendar P, Sadanandam A, Achaiah G, Malla RV. Synthesis, anticancer and MRP1 inhibitory activities of 4-alkyl/aryl-3,5-bis(carboethoxy/carbomethoxy)-1, 4-dihydro-2, 6-dimethylpyridines. Medicinal Chemistry Research 2013;22:147-155.
- Pinki Y, Kashmiri L, Ashwani K, Santosh KG, Sundeep J. Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles. European Journal of Medicinal Chemistry 2017;126:944-953.
- 6. Chitrakar R, Arem Q, Darapaneni CM, Shashank KS. Design, synthesis and cytotoxicity studies of novel pyrazolo[1, 5-a] pyridine derivatives. European Journal of Medicinal Chemistry 2017;126:277-285.
- Thangaraj A, Sadasivam M, Subashini G, Selvaraj S, Athar A, Palathurai SM. Biologically active perspective synthesis of heteroannulated 8-nitroquinolines with green chemistry approach. Bioorganic & Medicinal Chemistry Letters 2017;27:1538-1546. DOI: 10.1016/j. bmcl.2017.02.042
- Assem B, Mohammad SI, Abdullah MA, Hazem AG, Sammer Y, Mahwish A, Nimra NS, Choudhary MI, Ruqaiya K, Zaheer U. Synthesis of pyrimidine-2,4,6-trione derivatives: Anti-oxidant, anti-cancer, a-glucosidase, b-glucuronidase inhibition and their molecular docking studies. Bioorganic Chemistry 2016;68:72-79.

- 9. Syed NAB, Ibrahim J, Vijay HM, Devidas TM, Muhammad S, Hassan MN, Muhammad WA. Synthesis of α , β -unsaturated carbonyl based compounds as acetylcholinesterase and butyrylcholinesterase inhibitors: Characterization, molecular modeling, QSAR studies and effect against amyloid β -induced cytotoxicity. European Journal of Medicinal Chemistry 2014;83:355-365.
- Yuri FR, Cleiton MS, Daniel LS, Jeferson GS, Ana LTGR, Joao EC, Sergio AF, Angelo F. Phthalazine-triones: Calix[4]arene-assisted synthesis using green solvents and their anticancer activities against human cancer cells, Arabian Journal of Chemistry (2016) in press.
- 11. Elgemeie GH, Farag AB, Amin KM, El-Badry OM and Hassan GS. Design, synthesis and cytotoxic evaluation of novel heterocyclic thioglycosides. Medicinal Chemistry 2014;4:814- 820.
- Shailee VT, Julio AS, Vazquez-Tato MP, Aniket PS, Deepak KL, Anna PGN. Ultrasound mediated one-pot, three component synthesis, docking and ADME prediction of novel 5amino-2-(4-chlorophenyl)-7-substituted phenyl-8,8a-dihydro-7H-(1,3,4)thiadiazolo (3, 2α) pyrimidine-6-carbonitrile derivatives as anticancer agents. Molecules 2016;21:894.