

Geoinformatic Techniques for Analyzing Urban Sprawl Patterns and Drivers in Bikaner City: Data-Driven Strategies for Impact Mitigation

Pukha Raj Goswami

¹Centre for Climate Change and Water Research, SGVU, Jaipur, India

*E-mail: pukharajgoswami@gmail.com

ABSTRACT

Urban sprawl, defined by the unregulated expansion of urban territories into peripheral rural landscapes, presents a formidable obstacle to sustainable development. In rapidly developing cities like Bikaner, comprehending the spatial patterns and underlying drivers of this phenomenon is essential for formulating effective mitigation measures. This paper explores the utility of geoinformatic techniques—specifically the integration of Remote Sensing (RS) and Geographic Information Systems (GIS)—in analyzing these dynamics. By leveraging multi-temporal satellite imagery and spatial data, we can quantify urban growth rates, identify hotspots of rapid expansion, and isolate specific drivers such as population pressure. Furthermore, the application of Spatial Decision Support Systems (SDSS) utilizing mined GIS data allows for the prediction of future sprawl scenarios. These insights are pivotal for developing data-driven strategies that mitigate the adverse environmental and social impacts of sprawl while promoting sustainable urban management.

Key Words: Remote Sensing, Sustainable Urban Area, Urban Sprawl, Green Infrastructure, Satellite Imagery, GIS.

Introduction

The conversion of rural land into urban landscapes, often occurring without adequate planning, leads to significant agricultural loss, inflated infrastructure costs, environmental degradation, and social fragmentation. For rapidly urbanizing regions such as Bikaner City, understanding the specific mechanisms driving this sprawl is critical. Geoinformatic techniques—encompassing remote sensing, Geographic Information Systems (GIS), spatial modeling, and participatory mapping—serve as powerful instruments for monitoring and analyzing this expansion. By integrating spatiotemporal satellite imagery with demographic data and advanced data mining algorithms, urban planners can map and quantify the dynamics of urban growth. Bikaner is currently experiencing accelerated expansion driven by population increases, economic development, and infrastructural investments. This uncontrolled growth threatens natural resources and the urban environment. This study synthesizes insights from relevant research to demonstrate how geoinformatics approaches can be utilized to identify the drivers of sprawl in Bikaner and proposes data-driven strategies to foster sustainable urban management.

1. Harnessing Remote Sensing and GIS for Urban Sprawl Analysis

Satellite Imagery and Spatial-Temporal Monitoring

Remote sensing platforms, such as Landsat, provide essential multi-decadal, high-resolution

imagery that allows researchers to track the temporal evolution of urban footprints. This data enables the precise mapping of spatial extent, distinguishing between gradual and abrupt changes in land use. When integrated with GIS, diverse spatial datasets—including land cover, infrastructure, and demographic trends—can be visualized and analyzed to identify specific sprawl typologies, such as low-density, ribbon, or leapfrog development.

Key Analytical Methods

To delineate urban areas from non-urban surroundings, supervised classification algorithms (e.g., maximum likelihood classification) are employed. These methods reveal distinct growth patterns, including scattered expansion and ribbon development along transport corridors. Furthermore, change detection techniques and landscape metrics provide quantitative data on sprawl intensity and fragmentation over time. Density functions applied to population data assist in pinpointing areas where demographic shifts are actively contributing to spatial expansion.

Data Mining and Decision Support Systems

Advanced computational techniques enhance the utility of spatial data. Association rule mining (e.g., the A priori algorithm) uncovers hidden relationships between variables like infrastructure growth and land use changes. Concurrently, decision tree classification (e.g., the J4.8 algorithm) helps predict the likelihood of future sprawl based on current trends. These outputs feed into Spatial Decision Support Systems (SDSS), which

synthesize knowledge to aid policymakers in identifying at-risk zones and formulating targeted interventions.

2. Identifying Drivers of Urban Sprawl

2.1 Common Drivers Revealed by Geo-informatics Analysis

Geo-informatics analysis highlights several primary drivers fueling urban expansion: **Infrastructure Expansion:** Improved transportation networks increase accessibility to peripheral areas, often catalyzing outward growth. **Population Pressure:** Rapid demographic growth and migration necessitate new housing and services, pushing development beyond existing boundaries. **Economic Factors:** Lower land prices at the urban fringe attract both residents and developers, encouraging leapfrog and scattered settlements. **Policy Gaps:** A lack of comprehensive planning enforcement often results in spontaneous, unplanned expansion.

Table 1: Typical Urban Sprawl Patterns Detected via Geoinformatics

Pattern	Description	Detection Method
Low-density Development	Sparse residential expansion	Satellite image classification
Leapfrog Development	Discontinuous patches separated by open land	Change detection, GIS mapping
Ribbon Development	Linear growth along transport corridors	Buffer analysis in GIS
Scattered Growth	Random, isolated patches of development	Landscape metrics

3. Data-Driven Strategies for Mitigating Sprawl Impacts

Evidence-Based Urban Planning

Geo-informatics outputs should guide priority areas for infill development and densification, thereby curbing further outward expansion. Strategies such as brownfield redevelopment and retrofitting existing structures can optimize land use within the current urban footprint. Additionally, implementing transportation policies that promote compact, mixed-use developments reduces car dependency and limits the spatial spread of the city. Machine learning applied to multi-modal transportation data can further reveal functional zones and hidden relationships in travel behavior.

Decision Support and Policy Formulation

SDSS tools allow planners to simulate the effects of various policy scenarios on future sprawl patterns, enabling informed decision-making. Continuous monitoring of environmental impacts, such as the loss of agricultural land, guides conservation efforts.

Advanced analytics of large datasets—including social media and sensor data—provide actionable insights, though the reliability of such data must be critically assessed.

Community Engagement

Sharing geospatial analyses with stakeholders is crucial for raising awareness about the consequences of sprawl. Visual evidence helps build consensus around sustainable growth strategies and community-driven interventions.

4. Advancing Geo-informatics Applications

Future research should focus on leveraging higher-resolution spatial data and advanced machine learning techniques to improve detection accuracy and support real-time monitoring. Furthermore, integrating multi-modal transportation data with human mobility patterns will enhance the understanding of the interplay between travel behavior and urban form, leading to the design of more effective mitigation strategies.

Conclusion

The integration of remote sensing, GIS, and data mining provides a robust framework for dissecting the patterns and drivers of urban sprawl in cities like Bikaner. By moving beyond simple observation to predictive modeling, these technologies empower decision-makers to implement data-driven strategies. Whether through identifying specific drivers—such as infrastructure development and economic incentives—or simulating the impact of future policies, Geo-informatics facilitates a transition toward sustainable urban management. Ultimately, these tools support the preservation of agricultural land and environmental quality by promoting planned, compact growth over uncontrolled expansion.

References

1. Mehra, N., & Swain, J. B. (2024). Geospatial Assessment of Urban Sprawl Using Remote Sensing and GIS: A Case Study of Western Himalayan City of Dharmashala, Himachal Pradesh, India. In IOP Conference Series: Earth and Environmental Science (Vol. 1327, Issue 1, p.012031). IOP Publishing. <https://doi.org/10.1088/1755-1315/1327/1/012031>
2. Hassan, M. O., Ling, G. H. T., Rusli, N., Mokhtar, S., Wider, W., & Leng, P. C. (2023). Urban Sprawl Patterns, Drivers, and Impacts: The Case of Mogadishu, Somalia Using Geo-Spatial and SEM Analyses. In Land (Vol. 12, Issue 4, p. 783). MDPI AG. <https://doi.org/10.3390/land12040783>
3. Chen, B., Xu, B., & Gong, P. (2021). Mapping essential urban land use categories (EULUC) using geospatial big data: Progress, challenges, and opportunities. In Big Earth Data (Vol. 5, Issue 3, pp. 410–441). Informa UK Limited. <https://doi.org/10.1080/20964471.2021.1939243>
4. Geekyanage, D., Fernando, T., & Keraminiyage, K. (2021). Mapping Participatory Methods in the Urban Development Process: A Systematic Review and Case-Based Evidence Analysis. In Sustainability (Vol. 13, Issue 16, p. 8992). MDPI AG. <https://doi.org/10.3390/su13168992>
5. Asempah, M., Sahwan, W., & Schütt, B. (2021). Assessment of Land Cover Dynamics and Drivers of Urban Expansion Using Geospatial and Logistic Regression Approach in Wa

Municipality, Ghana. In Land (Vol. 10, Issue 11, p. 1251). MDPI AG. <https://doi.org/10.3390/land10111251>

6. Ahmad, F., & Goparaju, L. (2016). Analysis of Urban Sprawl Dynamics Using Geospatial Technology in Ranchi City, Jharkhand, India. In Journal of Environmental Geography (Vol. 9, Issues 1–2, pp. 7–13). University of Szeged. <https://doi.org/10.1515/jengeo-2016-0002>

7. Al-sharif, A. A. A., & Pradhan, B. (2015). A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS. In Geocarto International (Vol. 30, Issue 8, pp. 858–881). Informa UK Limited. <https://doi.org/10.1080/10106049.2014.997308>

8. Seevareethnam, M., Rusli, N., Ling, G. H. T., & Said, I. (2021). A Geo-Spatial Analysis for Characterising Urban Sprawl Patterns in the Batticaloa Municipal Council, Sri Lanka. In Land (Vol. 10, Issue 6, p. 636). MDPI AG. <https://doi.org/10.3390/land10060636>

9. Mohamadzadeh, P., Pourmoradian, S., Feizizadeh, B., Sharifi, A., & Vogdrup-Schmidt, M. (2020). A GIS-Based Approach for Spatially-Explicit Sustainable Development Assessments in East Azerbaijan Province, Iran. In Sustainability (Vol. 12, Issue 24, p. 10413). MDPI AG. <https://doi.org/10.3390/su122410413>

10. Raziq, A., Xu, A., & Li, Y. (2016). Monitoring of Land Use/Land Cover Changes and Urban Sprawl in Peshawar City in Khyber Pakhtunkhwa: An Application of Geo-Information Techniques Using of Multi-Temporal Satellite Data. In Journal of Remote Sensing & GIS (Vol. 05, Issue 04). OMICS Publishing Group. <https://doi.org/10.4172/2469-4134.1000174>

11. Marko Soštarić, Krešimir Vidović, Marijan Jakovljević and Orsat Lale (2021) Data-Driven Methodology for Sustainable Urban Mobility Assessment and Improvement. <https://doi.org/10.3390/su13137162>

12. Gerd Wetzel (2024) Mitigating the Impact of Urban Sprawl: Strategies and Solutions. <https://doi.org/10.3390/su13137162>

13. Marwan Omar Hassan, Gabriel Hoh Teck Ling, Noradila Rusli, Safizahanin Mokhtar, Walton Wider and Pau Chung Leng (2023) Urban Sprawl Patterns, Drivers, and Impacts: The Case of Mogadishu, Somalia Using Geo-Spatial and SEM Analyses. <https://doi.org/10.3390/land12040783>

14. Mohammad Raditia Pradana, Muhammad Dimyati(2024) Tracking Urban Sprawl: A Systematic Review and Bibliometric Analysis of Spatio-Temporal Patterns Using Remote Sensing and GIS. DOI:<https://doi.org/10.48088/ejg.m.pra.15.3.190.203>

15. Mathanraj Seevareethnam, Noradila Rusli, Gabriel Hoh Teck Ling and Ismail Said(2021) A Geo-Spatial Analysis for Characterising Urban Sprawl Patterns in the Batticaloa Municipal Council, Sri Lanka <https://doi.org/10.3390/land10060636>

16. Robert G. Paterson, S. Handy, K. Kockelman(2023) Techniques for Mitigating Urban Sprawl

17. Anna Kovacs-Györi, Alina Ristea, Clemens Havas, Michael Mehaffy, Hartwig H. Hochmair, Bernd Resch, Levente Juhasz, Arthur Lehner, Laxmi Ramasubramanian and Thomas Blaschke(2020) Opportunities and Challenges of Geospatial Analysis for Promoting Urban Livability in the Era of Big Data and Machine Learning. Doi: 10.3390/ijgi9120752

18. Zhenhong Du, Xiaoyi Zhang, Wenwen Li (2019) a multi-modal transportation data-driven approach to identify urban functional zones: An exploration based on Hangzhou City, China. <https://doi.org/10.1111/tgis.12591>

19. F. Ahmad, L. Goparaju(2016) analysis of urban sprawl dynamics using geospatial technology in ranchi city, jharkhand, india. DOI: 10.1515/jengeo-2016-0002

20. Anita Pampoor-Thampi, A. Varde, Danlin Yu (2020) Mining GIS Data to Predict Urban Sprawl.