

Integrating Geospatial Technologies for Climate-Resilient Development: Perspectives from India and Abroad

Shrikrishna Manjrekar

Centre for Climate Change and Water Research, SGVU, Jaipur, India
shri.manjrekar@gmail.com

Abstract

Global development faces a severe threat from climate change, necessitating a fundamental pivot toward climate-resilient strategies. Geospatial technologies—encompassing Remote Sensing (RS), Geographic Information Systems (GIS), Unmanned Aerial Vehicles (UAVs), and Artificial Intelligence (AI)—provide a robust, integrated framework for monitoring and managing these climate risks. This paper explores the synergistic application of these tools by comparing national initiatives in India, such as ISRO's Bhuvan, with international best practices like ESA's CCI. The analysis emphasizes technological strides in AI-driven predictive modeling and high-resolution mapping while addressing critical hurdles regarding data interoperability and computational limits. Ultimately, the study argues for stronger policy integration and the use of Explainable AI (XAI) to leverage geospatial insights for a resilient global future.

Keywords: Remote Sensing, GIS, UAVs, Artificial Intelligence, Climate Resilience, Disaster Management

Introduction

The increasing frequency and intensity of extreme weather events, such as floods, droughts, and heatwaves, demand immediate action toward climate-resilient development worldwide [1]. Effective climate action depends on robust, data-driven tools capable of assessing vulnerability and facilitating adaptive planning. Geospatial technologies serve as the foundation for these efforts by providing critical spatial and temporal insights into environmental shifts. This paper examines the integrated use of four core technologies—RS, GIS, UAVs, and AI—to bolster climate resilience. It presents a comparative analysis of their implementation, highlighting the specific challenges and innovations within India, a highly vulnerable nation, alongside established international practices. The goal is to synthesize current knowledge, identify best practices, and outline a roadmap for future research and policy.

Technological Framework for Climate Resilience

Climate resilience is greatly enhanced by the combined power of advanced geospatial tools, each offering unique capabilities for the monitoring and management lifecycle.

Remote Sensing (RS)

Remote Sensing, primarily utilizing satellite imagery, supplies the macro-level data essential for long-term monitoring and rapid disaster assessment. Missions by ISRO (feeding the Bhuvan geoportal) and international programs like NASA's Earth Science and ESA's Copernicus deliver vital multispectral and hyperspectral data [2][4]. This

data is indispensable for tracking land use changes, monitoring water body dynamics and glacier retreat, and providing real-time inputs for flood and drought early warning systems [1][5].

Geographic Information Systems (GIS)

GIS acts as the analytical backbone, merging multi-source spatial data to support complex decision-making. By layering climate projections with socio-economic data, GIS allows for precise vulnerability mapping to identify at-risk populations. It also guides urban planning to mitigate heat islands and flood risks, while providing interactive platforms for policymakers to simulate adaptation scenarios [2][5].

Unmanned Aerial Vehicles (UAVs)

UAVs, or drones, bridge the gap between satellite views and ground-level observations by offering high-resolution, on-demand imagery. They are particularly useful in precision agriculture for monitoring crop health, providing immediate situational awareness for disaster response, and inspecting critical infrastructure like dams and power lines for climate-induced damage [3].

Artificial Intelligence (AI) and Machine Learning (ML)

AI and ML are transformative technologies that automate the processing of massive datasets generated by RS, GIS, and UAVs. Deep learning models, including CNNs and LSTMs, are employed for automated feature extraction to reduce manual effort and for predictive modeling to forecast extreme events like floods with greater accuracy.

Furthermore, AI facilitates data fusion, creating a coherent view of climate impacts from multi-sensor sources [1][5].

Perspectives from India

India, characterized by its diverse geography and high population density, has pioneered the use of geospatial technologies for national development.

National Initiatives

The ISRO-managed Bhuvan geoportal stands as a prime national platform, offering thematic maps and tools for agriculture and disaster management to support local decisions [2]. Additionally, the India Water Resources Information System (India-WRIS) leverages geospatial data for effective water resource planning.

Case Studies

Table 1: Geospatial Applications for Climate Resilience in India

Application	Area	Technology Integration	Impact on Resilience	Citation
Flood Management	Brahmaputra River basin (Assam) and Kerala	RS (Sentinel-1 SAR) + ML (Random Forest) + GIS	Improved flood extent mapping and early warning dissemination; post-disaster recovery	[1] [2]
Climate-Smart Agriculture	Punjab and Maharashtra	RS + UAVs + GIS	Geo-referenced soil moisture data and crop phenology mapping; optimized irrigation	[2]
Urban Resilience	Delhi	RS (Landsat 8 thermal) + Deep Learning	Automated detection of Urban Heat Islands (UHI); guiding green space development	[5]

Disaster Response	Uttarakhand	UAVs (Drones)	Real-time situational awareness during floods and landslides by NDRF	[3]
-------------------	-------------	---------------	--	-----

International Perspectives (Abroad)

Global initiatives illustrate the versatility and scalability of integrated geospatial solutions across various climatic settings.

Global Programs

Europe's Copernicus Programme provides open access to Earth Observation data, serving as a pillar for climate resilience across the continent [4]. Similarly, NASA's Global Flood Mapping System uses AI-analyzed imagery for near-real-time flood detection, offering critical data to emergency responders worldwide [4].

Case Studies

Table 2: International Geospatial Applications for Climate Resilience

Application	Area	Technology Integration	Impact on Resilience	Citation
Flood Resilience	Netherlands	UAV Swarms + GIS + AI	Coordinated drone swarms monitor dike conditions and water levels	[3]
Drought Monitoring	Sub-Saharan Africa	RS (MODIS, CHIRPS) + ML	Predictive modeling enhances prediction of drought onset and severity	[4]
Climate Adaptation	EU	RS + Deep Learning	ESA's CCI employs deep learning for land cover and GHG monitoring	[4]
Infrastructure	Kenya	UAVs + GIS	Drones map fragile ecosystems and infrastructure vulnerable to flooding	[3]

Comparative Analysis

Integrating geospatial technologies reveals both convergence and divergence between India and international contexts.

Table 3: Comparative Analysis of Geospatial Implementation

Feature	India	International (Global North/Developed)
Data Accessibility	Strong national platforms (Bhuvan) but data sharing can be constrained by policy; focus on indigenous satellites.	High accessibility through open data policies (e.g., Copernicus, NASA); reliance on international satellite constellations.
Technological Focus	High emphasis on practical, large scale applications like agriculture and disaster management; rapid adoption of UAVs following liberalized policy [3].	Focus on advanced research, development of sophisticated AI/ML models, and integration with high performance computing [5].
Policy Framework	Evolving, with recent focus on streamlining drone and geospatial data policies (Drone Rules 2021) [3].	Established regulatory frameworks for data privacy, airspace management, and international collaboration.
Challenges	Data quality variability, computational demands, and regional specificity of models [5].	Model interpretability ('black box' issue), high cost of advanced sensors, and need for increased data sharing [5].

Challenges and Future Directions

Despite significant progress, several challenges must be addressed to fully realize the potential of these technologies.

Challenges

Harmonizing multi-source data remains complex due to varying resolutions and formats [5]. Furthermore, processing the massive volumes of big data generated by high-resolution sensors requires significant computational resources. The 'black box' nature of complex AI models also limits trust and transparency, while regulatory hurdles regarding airspace and privacy continue to slow UAV deployment [3][5].

6.2 Future Directions

To move forward, developing Explainable AI (XAI) is crucial for increasing user trust in policy decisions. Edge AI and cloud integration can enhance real-time responsiveness for critical applications like flood forecasting. Additionally, hybrid models that combine physics-based climate science with AI will ensure more robust predictions. Finally, embedding these insights into national strategies and investing in capacity building are essential for effective implementation [2][3][5].

Conclusion

The integration of Remote Sensing, GIS, UAVs, and AI represents a paradigm shift in climate-resilient development. From India's successful national platforms to global efforts in advanced monitoring, these technologies are proving indispensable. By addressing challenges in data quality, computational scale, and model transparency, and by fostering international collaboration, the global community can unlock the full potential of geospatial intelligence to build a more resilient and sustainable future.

References

- [1] Singh, R., Bhattacharyya, G., & Das, S. (2021). Machine Learning Models for Flood Hazard Assessment in Assam Using Sentinel-1 SAR Data. *Remote Sensing Applications: Society and Environment*, 21, 100449. <https://doi.org/10.1016/j.rsase.2021.100449>
- [2] Ghosh, S., Kumar, M., & Mishra, V. N. (2024). Geospatial Technology to Support Communities and Policy. Springer. <https://link.springer.com/content/pdf/10.1007/978-3-031-52561-2.pdf>
- [3] Kim, S., et al. (2023). Advances in UAV Swarm Technologies for Disaster Resilience. *Sensors*, 23(3), 1145. <https://doi.org/10.3390/s23031145>
- [4] Funk, C., et al. (2019). The climate hazard infrared precipitation with stations—a new environmental record for monitoring extremes. *Climate Risk Management*, 22, 100207. <https://doi.org/10.1016/j.crm.2018.12.001>
- [5] Kumar, P., & Sharma, R. (2020). Urban Heat Island Mapping in Delhi Using Landsat 8 and Deep Learning Techniques. *International Journal of Environmental Science and Technology*, 17, 345-356. <https://doi.org/10.1007/s13762-019-02494-4>
- [6] NASA Earth Science Division. (n.d.). Global Flood Mapping System. <https://floodmap.modaps.eosdis.nasa.gov/>
- [7] ESA Climate Change Initiative. (n.d.). Land Cover and Greenhouse Gas Monitoring. <https://climate.esa.int/en/>
- [8] NITI Aayog and Ministry of Civil Aviation, Government of India. (2021). Drone Policies, Regulations and Use Cases in India. <https://www.niti.gov.in/sites/default/files/2021-09/Policy-Document-Drones.pdf>
- [9] FAO. (2022). Unmanned Aerial Vehicles (Drones) for Climate-Resilient Agriculture. <https://www.fao.org/climate-smart-agriculture-sourcebook/production-resources/module-b11-uavs/en/>