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Abstract: Real-time detection, classification, and localization of electrical faults are essential for fast
protection and reliable operation of power systems. This paper presents a Diffusion-Enhanced Transformer
(proposed hybrid model) that fuses a ResNet-like feature extractor and Transformer-based sequence learner
with a diffusion-model generative module for data augmentation and robustness. The model is evaluated on
simulated IEEE-9 bus fault waveforms and benchmarked against conventional CNN, LSTM and Transformer
baselines. Experimental results demonstrate the framework’s strong real-time performance: per-fault
detection accuracies of 99.1% (LG), 98.7% (LL), 98.3% (LLG) and 98.9% (LLL); overall classification
metrics with precision/recall/F1 around 98.9% / 98.6% / 98.7% for the proposed model and confusion matrix
showing diagonal values >0.97). The proposed hybrid achieves 98.6% overall accuracy in comparative tests
while reducing fault-location error to 1.52 km (MAE), and 1.97 km (RMSE), outperforming ResNet and
LSTM baselines. These results confirm that integrating diffusion-based generative augmentation with a
Transformer backbone yields improved generalization on sparse/high-noise fault data, faster inference than
standard Transformers, and more accurate localization than conventional deep models, making the approach
suitable for deployment in smart substations and real-time protection schemes.

Keywords: Real-Time Fault Detection, Electrical Fault Classification, Diffusion-Enhanced Transformer,
Generative Al for Power Systems, Fault Location Prediction
phase short circuits, or multi-phase severe faults

I. INTRODUCTION that, if not addressed promptly, may escalate into

Reliable and uninterrupted electrical power delivery
is critically dependent on the ability of protection
systems to detect, classify, and isolate faults with
high accuracy and minimal delay. Transmission and
distribution networks are continuously exposed to
disturbances such as line-to-ground faults, phase-to-

cascading failures, equipment damage, or large-
scale outages [1]. Traditional protection schemes
including overcurrent relays, distance relays, and
impedance-based techniques, primarily rely on
threshold-based logic and steady-state phasor
estimation. While effective under nominal operating
conditions, these methods often struggle under
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modern grid complexities such as dynamic load
changes, renewable energy integration, noise
corruption, and evolving fault patterns [2].

In recent years, Artificial Intelligence (Al) and Deep
Learning (DL) have emerged as powerful
alternatives for power system protection, offering
the ability to extract complex patterns from
disturbance signals and handle nonlinear grid
behavior [3]. CNNs, LSTMs, and Transformer
architectures have been successfully applied to fault
analysis; however, they still face critical limitations
including sensitivity to class imbalance, limited
generalization under noisy environments, and
reduced performance when training data is sparse,
particularly for severe or uncommon fault types [4].
Moreover, achieving  real-time  detection
performance below 20 ms remains a challenge due
to the computational overhead of deep architectures.

To overcome these limitations, this paper introduces
a Diffusion-Enhanced Transformer (DET) Hybrid
Framework for real-time electrical fault detection,
classification, and location prediction. The proposed
method integrates three key innovations: a CNN-
based local feature extraction module to capture
transient fault signatures, a Transformer-based
temporal modeling component to learn phase
dependencies and evolving fault dynamics, and a
diffusion-driven generative refinement mechanism
that enhances feature stability under noisy or highly
variable operating conditions. The framework is
evaluated on a comprehensive dataset generated
from the IEEE-9 Bus system, covering diverse fault
locations, fault resistances, and varying grid
operating scenarios, demonstrating its robustness
and effectiveness in complex real-world
environments.

II. LITERATURE REVIEW

Accurate and timely fault detection in power
systems has been the focus of significant research
over the past decades. Traditional approaches, such
as overcurrent relays, distance relays, and
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impedance-based techniques, rely on threshold-
based measurements and fixed relay settings. While
these methods are straightforward and widely
deployed, they suffer from limited adaptability
under dynamic operating conditions, high noise
levels, or complex fault scenarios [5,6].
Consequently, these conventional methods may
exhibit slower response times, lower accuracy, or
misclassification under non-ideal grid conditions.

The advent of Al and Machine Learning (ML) has
provided new paradigms for real-time fault analysis.
Early studies applied Artificial Neural Networks
(ANNs) and Support Vector Machines (SVMs) for
fault classification and localization, demonstrating
improved accuracy over traditional relays,
particularly for multi-phase and multi-location
faults [7,8]. However, the performance of these
shallow models is constrained by their limited
capacity to extract temporal and spatial features
from complex waveform data.

Recent research has focused on DL approaches,
including Convolutional Neural Networks (CNN5s)
and Long Short-Term Memory (LSTM) networks,
which excel in capturing transient signatures and
temporal dependencies of fault signals. CNN-based
frameworks have shown high classification
accuracy for single-line-to-ground (LG) and line-to-
line (LL) faults, while LSTMs effectively model
sequential fault dynamics, aiding in fault location
estimation [9]. Nevertheless, these models are still
challenged by noisy measurements, limited datasets,
and the need for real-time inference, as deep
architectures often introduce computational latency.

To address the limitations of conventional DL
models, recent studies have explored Transformer-
based architectures and generative models.
Transformers, with self-attention mechanisms,
capture long-range temporal correlations and inter-
phase dependencies more effectively than LSTMs,
enabling robust classification of multi-phase faults
[10. Meanwhile, Generative Adversarial Networks
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(GANs) and Diffusion Probabilistic Models
(DDPMs) have been employed to augment sparse or
imbalanced datasets, providing synthetic fault
waveforms that enhance generalization under rare
fault conditions [11]. Integrating generative
augmentation with DL models improves
classification for high-severity, low-frequency fault
events while maintaining low inference latency.

Despite these advances, few studies have effectively
combined deep feature extraction, Transformer-
based sequence modeling, and generative data
augmentation into a unified framework for real-time
fault detection, classification, and precise location
prediction [12]. Existing approaches often face
trade-offs between accuracy, inference speed, and
robustness, with many models exhibiting latencies
higher than the substation protection requirements
of under 20 ms. Furthermore, most methods lack
validation across diverse fault scenarios and do not
provide an integrated protection—action response.
Motivated by these gaps, the present work
introduces a DET Hybrid Model that fuses CNN-
based feature extraction for capturing transient and
high-frequency patterns, a Transformer encoder for
learning temporal and inter-phase correlations, and
diffusion-based generative augmentation to enhance
robustness under sparse or noisy measurement
conditions.

III. METHODOLOGY

The methodology of this research is designed to
develop a high-performance, real-time fault
detection and classification framework for
transmission systems using a DET Hybrid
architecture as shown in figure 1. The proposed
methodology integrates deep feature extraction,
temporal sequence modeling, and generative data
augmentation into a unified pipeline optimized for
real-time substation operation. It begins with
systematic data generation and preprocessing using
the IEEE-9 Bus system, followed by hierarchical
feature learning through CNN and Transformer
modules. A diffusion-based generative model is
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incorporated to enhance robustness under noisy and
rare fault scenarios, while hybrid fusion techniques
combine spatial and temporal features to maximize
learning efficiency. The final stages involve fault
detection, classification, fault location estimation,
and real-time protection-action integration.
Together, these methodological components
establish a reliable, fast, and accurate framework
tailored for next-generation intelligent grid

protection.

Data Generation
(IEEE-9 Bus test system)

-

Data Preprocessing
- Mormalization
- Noise Injection (20-40 dB)
- Window Segmentation

+

CNN-Based Local Feature Extraction
- Transient detection
- High-frequency feature learning

+

Transformer Encoder for Temporal Modeling
- Multi-head self attention
- Inter-phase correlation learning
- Positional encoding

+

Diffusion-Based Generative Augmentation
- Forward diffusion {noise addition)
- Reverse denoising (sample generation)
- Balanced dataset creation

+

Hybrid Feature Fusion & Model Optimization
- CNN + Transformer embedding concatenation
- FC layers for classification & regression

+

Fault Analysis Module
- Fault Detection (Binary)
- Fault Classification (LG, LL, LLG, LLL)
- Fault Location Prediction (Distance in km)

+

Real-Time Protection Action
- Breaker trip decision
- Line isolation
- Response time evaluation
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Figure 1: Proposed DET Hybrid Framework for
Real-Time Fault Analysis

A. Data Generation and Preprocessing

The methodology begins with the creation of a
comprehensive and diverse dataset using the IEEE-
9 Bus test system. Various fault types—including
LG, LL, LLG, and LLL—were simulated under
multiple operating conditions, fault resistances, and
fault distances along the transmission lines. Voltage
and current signals were sampled at a high
resolution of 10 kHz to ensure accurate capture of
fast-transient fault signatures. The signals were
further processed through normalization, noise
injection at different SNR levels (20 dB, 30 dB, and
40 dB), and segmentation into fixed time windows
suitable for deep learning ingestion. This
preprocessing pipeline ensures that the model
receives clean, well-structured, and sufficiently
diverse signal samples for robust learning.

B. CNN-Based Local Feature Extraction

The preprocessed multi-phase fault signals are first
passed through a Convolutional Neural Network
(CNN) module designed to extract high-frequency
and transient patterns. CNN layers are particularly
effective in  identifying abrupt waveform
variations—such as travelling waves, harmonic
distortions, and discontinuities—generated during
fault events. The convolutional kernels learn to
highlight localized changes in signal amplitude and
phase that differentiate one fault type from another.
The extracted spatial features form a rich
representation of fault-induced distortions, serving
as the foundation for deeper temporal modeling in
the next stage.

C. Transformer-Based Temporal and Inter-
Phase Dependency Modeling

The spatial features generated by the CNN are then
fed into a Transformer encoder that models long-
range temporal dependencies across the waveform.
Unlike recurrent networks, the Transformer
architecture uses multi-head self-attention to
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process all time steps simultaneously, allowing it to
learn correlations between phases and capture
evolving dynamics before, during, and after the fault
occurrence. This enables the model to accurately
distinguish between fault types with similar
transient  signatures but different temporal
evolutions. Positional encoding ensures that time
order is preserved, while attention heads focus on
relationships across phases (A, B, C) to identify
subtle inter-phase interactions. This stage
significantly enhances the model’s classification
and location prediction capabilities.

D. Diffusion-Based Generative Augmentation

To address data imbalance and improve robustness
under noisy or rare fault situations, a diffusion
model is incorporated for generative data
augmentation. The diffusion process gradually adds
noise to real signals and then learns to reverse this
process to generate high-fidelity synthetic samples
that closely resemble real measurements. These
synthetic signals expand the dataset distribution,
improving the model’s ability to generalize across
different fault resistances, load levels, and system
disturbances. Compared to GANSs, diffusion models
provide more stable training, higher quality
samples, and better preservation of waveform
structure—resulting in enhanced classification
accuracy and reduced location error.

E. Hybrid Fusion and Model Optimization

The CNN, Transformer, and diffusion components
are integrated into a unified hybrid framework
known as the Diffusion-Enhanced Transformer
(DET). Feature fusion is performed by
concatenating CNN-extracted spatial features with
Transformer temporal embeddings, followed by
fully connected layers for classification and
regression tasks. Hyperparameters such as learning
rate, batch size, and number of attention heads are
optimized through grid search and validation
experiments. The hybrid architecture ensures an
efficient balance  between accuracy and
computational cost, enabling the model to achieve
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real-time inference performance well below the 20
ms requirement for substation protection.

F. Fault Detection, Classification, and Location
Prediction

The fused model outputs three primary results: (1)
fault occurrence status, (2) fault type classification,
and (3) fault location estimation. The detection
module uses a binary decision threshold to
determine whether a fault has occurred, while the
classification head assigns the event to one of the
four fault categories. A separate regression head
predicts the distance of the fault from the sending-
end bus in kilometers. Confidence scores are
generated for each decision to support reliability
analysis and event verification. Performance
metrics such as accuracy, precision, recall, F1-score,
MAE, and RMSE are computed to evaluate the
model comprehensively.

G. Real-Time Protection Action Integration
Finally, the model’s outputs are fed into a decision-
making module that triggers appropriate protection
actions in real time. If a fault is detected and
classified with high confidence, and the predicted
fault location lies within a valid line corridor, the
system sends a tripping signal to the circuit breaker.
Breaker operation times, isolation success rates, and
false-alarm probabilities are measured to assess the
practical feasibility of deploying the model in
substation environments. The low inference time of
11.4 ms and high isolation accuracy (>99%) confirm
the suitability of the proposed framework for real-
time protection applications.

IV. Results and Discussion

The results of the proposed Diffusion-Enhanced
Transformer (DET) Hybrid Framework are
evaluated comprehensively using a diverse and
realistic dataset generated from the IEEE 9-Bus
system. The analysis covers fault detection,
classification performance, fault location accuracy,
inference latency, and real-time protection action
effectiveness. The section presents quantitative
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comparisons across conventional deep learning
models, generative Al-augmented models, and the
proposed hybrid approach, followed by detailed
discussions supported by performance tables and
graphical figures. This systematic evaluation
demonstrates the superiority of the proposed model
across all critical parameters required for intelligent
fault analysis in modern power systems.

Table 1: Dataset Summary and Fault Categories

Parameter Value
Total Signals 25,000
Sampling Rate 10 kHz
Number of Buses 9 (IEEE 9-Bus System)
Fault Types LG, LL, LLG, LLL
Fault Resistances 0.1-50
(9)
Noise Levels (SNR) 20 dB, 30 dB, 40 dB

The comprehensive summary of the dataset used to
train and evaluate the proposed hybrid framework is
given in table 1. A total of 25,000 signals were
generated using the IEEE-9 Bus test system,
ensuring wide coverage of fault scenarios. The 10
kHz sampling rate allowed the capture of high-
frequency transient components that are crucial for
early fault detection. All major transmission-line
fault types—LG, LL, LLG, and LLL—were
modeled with diverse fault resistances (0.1-50 Q) to
simulate realistic grid conditions from low-
impedance severe faults to high-resistance incipient
faults. The use of multiple SNR levels (20 dB, 30
dB, 40 dB) ensured robustness against noise.
Overall, Table 1 demonstrates that the dataset is
sufficiently rich, diverse, and representative of
practical transmission-line operating conditions.

Table 2: Performance Comparison of Models
(Without Generative Al)

Model Accurac | Precisio | Recal | Fl1-
y (%) n % 1% | Scor
e %
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CNN 92.4 91 90 90

LSTM 93.1 92 91 91

ResNet-18 94.7 94 93 93

Transform 95.3 95 94 94
er

The performance of traditional deep learning
models without generative augmentation. The
results indicate a clear increasing trend in
performance from CNN — LSTM — ResNet-18 —
Transformer is compared in table 2. Transformer
achieved the highest baseline accuracy (95.3%)
along with strong precision, recall, and F1-score
values (95 %, 94%, 94%). CNN and LSTM show
lower accuracy due to limited ability to extract long-
range temporal dependencies. The ResNet-18 model
performs better than both due to its deep residual
feature extraction. However, all baseline models
still show room for improvement, highlighting the
need for generative enhancement and hybridization.
Table 2 therefore establishes the baseline
performance limit before introducing generative Al.

Table 3: Hybrid DL + Generative Al Performance

Model Accurac | Precisio | Recal | Fl-
y (%) n % 1% | Scor
e %
GAN- 96.5 96 95 95
Augmente
d CNN
cGAN- 97.8 97 97 97
ResNet
Diffusion- 98.6 98 98 98
Enhanced
Transform
er
(Proposed)

The significant improvement when generative Al is
incorporated into the training process is given in the
table 3. The GAN-Augmented CNN achieves 96.5%
accuracy, while cGAN-ResNet reaches 97.8%,
reflecting improved robustness due to enhanced data
diversity. The Diffusion-Enhanced Transformer
(Proposed) model outperforms all others with

SGVU International Journal of Convergence of Technology and Management

E-ISSN: 2455-7528
Vol.12 Issue 1 Page No 95-105

98.6% accuracy and balanced precision, recall, and
Fl-score values (98% each). Diffusion models
generate higher-quality synthetic samples than
GANSs or cGANSs, improving the model’s ability to
classify complex and noisy signals. This table
demonstrates that the combination of deep learning
with diffusion-based generative augmentation leads
to superior generalization and fault classification

performance.
Table 4: Fault Location Prediction Error
Model Mean Absolute | RMSE
Error (km) (km)
LSTM 4.28 5.92
ResNet 3.74 4.81
Proposed Hybrid 1.52 2.23
Model

The capability of different models to estimate the
physical location of faults along transmission lines
is evaluated in table 4. The LSTM baseline exhibits
the highest error (MAE = 4.28 km, RMSE = 5.92
km), indicating limited feature extraction and
temporal prediction capacity. The ResNet baseline
improves the MAE to 3.74 km, showing the
advantage of residual learning. However, the
Proposed Hybrid Model achieves a dramatically
lower error (MAE = 1.52 km, RMSE = 2.23 km).
This improvement is attributed to the combined
effect of diffusion-enhanced data augmentation and
Transformer-based sequence modeling, which
better capture spatial-temporal dependencies across
phases. Table 4 thus confirms the proposed model’s
superior ability to localize faults precisely.

Table 5: Real-Time Fault Detection Performance

Fault Detection Detection False
Type Accuracy | Time (ms) Alarm
(%) Rate (%)
LG 99.1 11.2 0.3
LL 98.7 12.1 0.4
LLG 98.3 11.7 0.5
LLL 98.9 12.5 0.2
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The real-time fault detection accuracy across fault
types is illustrated in table 5. The proposed hybrid
model demonstrates consistently high detection
accuracy for all categories: LG (99.1%), LL
(98.7%), LLG (98.3%), and LLL (98.9%).
Detection times remain within 11-12.5 ms, meeting
real-time protection requirements (<20 ms). The
false alarm rates are extremely low (0.2-0.5%),
indicating robust decision reliability even under
noise. Single-line faults (LG) show slightly higher
accuracy due to simpler waveform characteristics,
while multi-phase faults achieve similarly high
performance because of the enhanced feature
extraction and generative augmentation. Overall,
Table 5 confirms that the proposed framework is
capable of fast, accurate, and reliable real-time fault
detection.

Table 6: Fault Classification Accuracy

Metric LG | LL | LLG | LLL | Proposed

Hybrid

Model

Precision | 98.5 | 99.1 | 97.8 | 99.3 98.9
(%)

Recall |98.2]98.8|98.4]99.0 98.6
(%)

FI1-Score |98.3|98.9| 98.1 | 99.1 98.7
(%)

The detailed classification metrics across all fault
categories, further validating the model’s robustness
is presented in table 6. Precision, recall, and F1-
score values remain above 97% for every class,
demonstrating highly stable behavior. The Proposed
Hybrid Model maintains superior overall
performance (Precision = 98.9%, Recall = 98.6%,
F1 = 98.7%) compared to individual class metrics.
LLL faults achieve the highest precision (99.3%)
and Fl-score (99.1%) due to their strong transient
signatures. LLG and LL faults also show excellent
classification consistency. The consistently high
values across all metrics confirm that the hybrid
model not only detects faults accurately but also

distinguishes between closely similar fault types
with high confidence.
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Table 7: Real-Time Protection System Actions

Fault Type | Breaker Response Isolation
(ms) Success (%)
LG 32 99.4
LL 34 99.1
LLG 30 98.9
LLL 33 99.2

The performance of the protection system after the
proposed hybrid model identifies and classifies the
fault is given in table 7. The breaker response times
for all fault types—LG (32 ms), LL (34 ms), LLG
(30 ms), and LLL (33 ms)—fall well within
acceptable industry standards for substation
protection, which typically require operation within
40 ms. The lowest breaker response time is achieved
for LLG faults (30 ms), likely due to the strong
transient features that allow faster and more
confident fault detection.

Isolation success rates are consistently high across
all categories: LG (99.4%), LL (99.1%), LLG
(98.9%), and LLL (99.2%). These values confirm
that the decision-making module of the proposed
framework reliably triggers the correct protection
actions after classification and location prediction.
The success rates remain above 98.9%, indicating
robust coordination between detection,
classification, and breaker operations. Overall,
Table 7 demonstrates that the proposed model is
capable of not only accurate real-time analysis but
also dependable protection system activation.
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True Class
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LLG

0.2

LLL

LG L LG LLL
Predicted Class
Figure 2: Confusion Matrix of proposed hybrid
model

The confusion matrix for the proposed Diffusion-
Enhanced Transformer model, demonstrating
excellent classification performance across all four
fault categories is shown in figure 2. The diagonal
values in the matrix are above 0.97 for every class,
indicating that the model correctly classifies more
than 97% of the instances for each fault type
consistent with the precision, recall, and F1-scores
reported in Table 6. Misclassifications are minimal
and symmetrically distributed, with no fault type
producing significant confusion with the others.
Slight confusion between LLG and LLL is expected
due to similarities in waveform patterns and
simultaneous multi-phase involvement. However,
the diffusion-enhanced training and transformer-
based temporal modeling significantly reduce this
issue. The confusion matrix validates that the model
maintains high sensitivity and specificity under
diverse operating conditions and noise levels.
Overall, Figure 2 confirms that the proposed hybrid
framework exhibits strong discriminative capability
and classification stability.
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Figure 3: Accuracy comparison of models

Accuracy (%)

The accuracy of different deep learning models used
for fault classification is compared in figure 3. The
results show a clear progression of performance
improvement from CNN (92.4%), LSTM (93.1%),
and ResNet-18 (94.7%) to the Transformer (95.3%)
model. This performance increase is due to better
feature extraction (ResNet) and superior temporal
dependency modeling (Transformer). The Proposed
Hybrid Model, which combines diffusion-based
augmentation with transformer sequence modeling,
achieves the highest accuracy at 98.6%,
significantly outperforming all baseline models.
This improvement validates the importance of
generative  augmentation in reducing data
imbalance, improving robustness under noisy and
rare fault conditions, and enhancing overall
classification performance. The result also
demonstrates the advantage of combining CNN
feature extraction with transformer-based temporal
learning. Thus, Figure 3 clearly illustrates the
superiority of the proposed model in real-time fault
classification tasks.
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Figure 4: Fault location prediction error

The Mean Absolute Error (MAE) comparison for
fault location estimation using three different
models: LSTM, ResNet, and the Proposed Hybrid
Model is illustrated in figure 4. The LSTM model
records the highest error (4.28 km), reflecting its
limited capability to capture both spatial and
temporal features effectively. The ResNet model
shows improvement with an MAE of 3.74 km,
benefiting from deeper spatial feature extraction
through residual blocks but still lacking advanced
temporal modeling. In contrast, the Proposed
Hybrid Model achieves a significantly lower MAE
of 1.52 km, demonstrating a major advancement in
fault localization accuracy. This substantial
improvement is due to the combination of CNN-
based feature extraction, Transformer-based
temporal dependency modeling, and diffusion-
enhanced  generative  augmentation,  which
collectively enhance sensitivity to subtle changes in
waveform distortion. Figure 4 thus confirms that the
hybrid model provides the most precise and reliable
fault location prediction among all evaluated
approaches.
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operation
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The inference times of four different models like
CNN, LSTM, Transformer, and the Proposed
Hybrid Model to evaluate their suitability for real-
time fault detection and classification is illustrated
in figure 5. The LSTM and Transformer models
exhibit higher inference times (18.2 ms and 21.1 ms,
respectively), reflecting the computational overhead
associated with sequential recurrent processing and
multi-head attention mechanisms. The CNN model
performs faster (12.8 ms) due to its parallelizable
architecture but sacrifices temporal sensitivity. The
Proposed Hybrid Model achieves the lowest
inference time of 11.4 ms, demonstrating a well-
optimized fusion of CNN-based local feature
extraction and transformer-level temporal modeling
enhanced through diffusion processes. Importantly,
the inference time remains well below the 20 ms
threshold required for substation protection,
confirming that the proposed model not only excels
in accuracy but also meets stringent real-time
operational constraints. Figure 5 therefore validates
the model’s applicability for fast protection schemes
in modern power systems.

Overall, the results clearly demonstrate that the
proposed Diffusion-Enhanced Transformer (DET)
Hybrid Framework outperforms existing deep
learning models in accuracy, robustness, fault
localization precision, and real-time inference
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efficiency. The incorporation of diffusion-based
generative augmentation significantly improves the
model’s generalization capability across diverse
fault scenarios, while the hybrid CNN—Transformer
architecture ensures effective spatial-temporal
feature extraction. The model’s ability to operate
within strict real-time constraints, combined with
high protection-action success rates, highlights its
suitability for deployment in next-generation smart
grid protection systems. These findings validate the
proposed approach as a reliable, high-performance
solution for real-time electrical fault detection,
classification, and location prediction.

VI. CONCLUSION

This paper presented a DET Hybrid Framework for
real-time fault detection, classification, and location
prediction in power transmission systems. By
integrating ~ CNN-based  feature  extraction,
Transformer-based  temporal modeling, and
diffusion-generated synthetic data, the proposed
model demonstrated significant improvements over
conventional DL approaches. The system achieved
high per-class detection accuracy exceeding 98%
for all fault categories, and delivered an overall
classification accuracy of 98.6%, supported by
strong precision-recall-F1 scores. Comparative
evaluations confirmed that the hybrid model
consistently outperforms baseline CNN, LSTM, and
Transformer networks across all metrics. The
proposed regression head provided precise fault-
location predictions, achieving MAE (1.52 km) and
RMSE (1.97 km), making it suitable for practical
relay and protection applications. The real-time
inference pipeline demonstrated a detection-to-
decision latency of 11.4 ms, enabling system
response well within the 20 ms requirement of
modern grid protection schemes. Integration of the
protection-action module resulted in breaker
isolation success rates above 98.9%, underscoring
the reliability and robustness of the complete
system. The proposed DET framework offers a
scalable and practical solution for next-generation
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smart substations, adaptive protection systems, and
grid automation.
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