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Abstract: Real-time detection, classification, and localization of electrical faults are essential for fast 

protection and reliable operation of power systems. This paper presents a Diffusion-Enhanced Transformer 

(proposed hybrid model) that fuses a ResNet-like feature extractor and Transformer-based sequence learner 

with a diffusion-model generative module for data augmentation and robustness. The model is evaluated on 

simulated IEEE-9 bus fault waveforms and benchmarked against conventional CNN, LSTM and Transformer 

baselines. Experimental results demonstrate the framework’s strong real-time performance: per-fault 

detection accuracies of 99.1% (LG), 98.7% (LL), 98.3% (LLG) and 98.9% (LLL); overall classification 

metrics with precision/recall/F1 around 98.9% / 98.6% / 98.7% for the proposed model and confusion matrix 

showing diagonal values >0.97). The proposed hybrid achieves 98.6% overall accuracy in comparative tests 

while reducing fault-location error to 1.52 km (MAE), and 1.97 km (RMSE), outperforming ResNet and 

LSTM baselines. These results confirm that integrating diffusion-based generative augmentation with a 

Transformer backbone yields improved generalization on sparse/high-noise fault data, faster inference than 

standard Transformers, and more accurate localization than conventional deep models, making the approach 

suitable for deployment in smart substations and real-time protection schemes. 

 

Keywords: Real-Time Fault Detection, Electrical Fault Classification, Diffusion-Enhanced Transformer, 

Generative AI for Power Systems, Fault Location Prediction 

 

I. INTRODUCTION 

Reliable and uninterrupted electrical power delivery 

is critically dependent on the ability of protection 

systems to detect, classify, and isolate faults with 

high accuracy and minimal delay. Transmission and 

distribution networks are continuously exposed to 

disturbances such as line-to-ground faults, phase-to- 

 

phase short circuits, or multi-phase severe faults 

that, if not addressed promptly, may escalate into 

cascading failures, equipment damage, or large-

scale outages [1]. Traditional protection schemes 

including overcurrent relays, distance relays, and 

impedance-based techniques, primarily rely on 

threshold-based logic and steady-state phasor 

estimation. While effective under nominal operating 

conditions, these methods often struggle under 
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modern grid complexities such as dynamic load 

changes, renewable energy integration, noise 

corruption, and evolving fault patterns [2]. 

 

In recent years, Artificial Intelligence (AI) and Deep 

Learning (DL) have emerged as powerful 

alternatives for power system protection, offering 

the ability to extract complex patterns from 

disturbance signals and handle nonlinear grid 

behavior [3]. CNNs, LSTMs, and Transformer 

architectures have been successfully applied to fault 

analysis; however, they still face critical limitations 

including sensitivity to class imbalance, limited 

generalization under noisy environments, and 

reduced performance when training data is sparse, 

particularly for severe or uncommon fault types [4]. 

Moreover, achieving real-time detection 

performance below 20 ms remains a challenge due 

to the computational overhead of deep architectures. 

 

To overcome these limitations, this paper introduces 

a Diffusion-Enhanced Transformer (DET) Hybrid 

Framework for real-time electrical fault detection, 

classification, and location prediction. The proposed 

method integrates three key innovations: a CNN-

based local feature extraction module to capture 

transient fault signatures, a Transformer-based 

temporal modeling component to learn phase 

dependencies and evolving fault dynamics, and a 

diffusion-driven generative refinement mechanism 

that enhances feature stability under noisy or highly 

variable operating conditions. The framework is 

evaluated on a comprehensive dataset generated 

from the IEEE-9 Bus system, covering diverse fault 

locations, fault resistances, and varying grid 

operating scenarios, demonstrating its robustness 

and effectiveness in complex real-world 

environments. 

 

II. LITERATURE REVIEW 

Accurate and timely fault detection in power 

systems has been the focus of significant research 

over the past decades. Traditional approaches, such 

as overcurrent relays, distance relays, and 

impedance-based techniques, rely on threshold-

based measurements and fixed relay settings. While 

these methods are straightforward and widely 

deployed, they suffer from limited adaptability 

under dynamic operating conditions, high noise 

levels, or complex fault scenarios [5,6]. 

Consequently, these conventional methods may 

exhibit slower response times, lower accuracy, or 

misclassification under non-ideal grid conditions. 

 

The advent of AI and Machine Learning (ML) has 

provided new paradigms for real-time fault analysis. 

Early studies applied Artificial Neural Networks 

(ANNs) and Support Vector Machines (SVMs) for 

fault classification and localization, demonstrating 

improved accuracy over traditional relays, 

particularly for multi-phase and multi-location 

faults [7,8]. However, the performance of these 

shallow models is constrained by their limited 

capacity to extract temporal and spatial features 

from complex waveform data. 

 

Recent research has focused on DL approaches, 

including Convolutional Neural Networks (CNNs) 

and Long Short-Term Memory (LSTM) networks, 

which excel in capturing transient signatures and 

temporal dependencies of fault signals. CNN-based 

frameworks have shown high classification 

accuracy for single-line-to-ground (LG) and line-to-

line (LL) faults, while LSTMs effectively model 

sequential fault dynamics, aiding in fault location 

estimation [9]. Nevertheless, these models are still 

challenged by noisy measurements, limited datasets, 

and the need for real-time inference, as deep 

architectures often introduce computational latency. 

 

To address the limitations of conventional DL 

models, recent studies have explored Transformer-

based architectures and generative models. 

Transformers, with self-attention mechanisms, 

capture long-range temporal correlations and inter-

phase dependencies more effectively than LSTMs, 

enabling robust classification of multi-phase faults 

[10. Meanwhile, Generative Adversarial Networks 
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(GANs) and Diffusion Probabilistic Models 

(DDPMs) have been employed to augment sparse or 

imbalanced datasets, providing synthetic fault 

waveforms that enhance generalization under rare 

fault conditions [11]. Integrating generative 

augmentation with DL models improves 

classification for high-severity, low-frequency fault 

events while maintaining low inference latency. 

 

Despite these advances, few studies have effectively 

combined deep feature extraction, Transformer-

based sequence modeling, and generative data 

augmentation into a unified framework for real-time 

fault detection, classification, and precise location 

prediction [12]. Existing approaches often face 

trade-offs between accuracy, inference speed, and 

robustness, with many models exhibiting latencies 

higher than the substation protection requirements 

of under 20 ms. Furthermore, most methods lack 

validation across diverse fault scenarios and do not 

provide an integrated protection–action response. 

Motivated by these gaps, the present work 

introduces a DET Hybrid Model that fuses CNN-

based feature extraction for capturing transient and 

high-frequency patterns, a Transformer encoder for 

learning temporal and inter-phase correlations, and 

diffusion-based generative augmentation to enhance 

robustness under sparse or noisy measurement 

conditions. 

 

III. METHODOLOGY 

The methodology of this research is designed to 

develop a high-performance, real-time fault 

detection and classification framework for 

transmission systems using a DET Hybrid 

architecture as shown in figure 1. The proposed 

methodology integrates deep feature extraction, 

temporal sequence modeling, and generative data 

augmentation into a unified pipeline optimized for 

real-time substation operation. It begins with 

systematic data generation and preprocessing using 

the IEEE-9 Bus system, followed by hierarchical 

feature learning through CNN and Transformer 

modules. A diffusion-based generative model is 

incorporated to enhance robustness under noisy and 

rare fault scenarios, while hybrid fusion techniques 

combine spatial and temporal features to maximize 

learning efficiency. The final stages involve fault 

detection, classification, fault location estimation, 

and real-time protection-action integration. 

Together, these methodological components 

establish a reliable, fast, and accurate framework 

tailored for next-generation intelligent grid 

protection. 
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Figure 1: Proposed DET Hybrid Framework for 

Real-Time Fault Analysis 

 

A. Data Generation and Preprocessing 

The methodology begins with the creation of a 

comprehensive and diverse dataset using the IEEE-

9 Bus test system. Various fault types—including 

LG, LL, LLG, and LLL—were simulated under 

multiple operating conditions, fault resistances, and 

fault distances along the transmission lines. Voltage 

and current signals were sampled at a high 

resolution of 10 kHz to ensure accurate capture of 

fast-transient fault signatures. The signals were 

further processed through normalization, noise 

injection at different SNR levels (20 dB, 30 dB, and 

40 dB), and segmentation into fixed time windows 

suitable for deep learning ingestion. This 

preprocessing pipeline ensures that the model 

receives clean, well-structured, and sufficiently 

diverse signal samples for robust learning. 

 

B. CNN-Based Local Feature Extraction 

The preprocessed multi-phase fault signals are first 

passed through a Convolutional Neural Network 

(CNN) module designed to extract high-frequency 

and transient patterns. CNN layers are particularly 

effective in identifying abrupt waveform 

variations—such as travelling waves, harmonic 

distortions, and discontinuities—generated during 

fault events. The convolutional kernels learn to 

highlight localized changes in signal amplitude and 

phase that differentiate one fault type from another. 

The extracted spatial features form a rich 

representation of fault-induced distortions, serving 

as the foundation for deeper temporal modeling in 

the next stage. 

 

C. Transformer-Based Temporal and Inter-

Phase Dependency Modeling 

The spatial features generated by the CNN are then 

fed into a Transformer encoder that models long-

range temporal dependencies across the waveform. 

Unlike recurrent networks, the Transformer 

architecture uses multi-head self-attention to 

process all time steps simultaneously, allowing it to 

learn correlations between phases and capture 

evolving dynamics before, during, and after the fault 

occurrence. This enables the model to accurately 

distinguish between fault types with similar 

transient signatures but different temporal 

evolutions. Positional encoding ensures that time 

order is preserved, while attention heads focus on 

relationships across phases (A, B, C) to identify 

subtle inter-phase interactions. This stage 

significantly enhances the model’s classification 

and location prediction capabilities. 

 

D. Diffusion-Based Generative Augmentation 

To address data imbalance and improve robustness 

under noisy or rare fault situations, a diffusion 

model is incorporated for generative data 

augmentation. The diffusion process gradually adds 

noise to real signals and then learns to reverse this 

process to generate high-fidelity synthetic samples 

that closely resemble real measurements. These 

synthetic signals expand the dataset distribution, 

improving the model’s ability to generalize across 

different fault resistances, load levels, and system 

disturbances. Compared to GANs, diffusion models 

provide more stable training, higher quality 

samples, and better preservation of waveform 

structure—resulting in enhanced classification 

accuracy and reduced location error. 

 

E. Hybrid Fusion and Model Optimization 

The CNN, Transformer, and diffusion components 

are integrated into a unified hybrid framework 

known as the Diffusion-Enhanced Transformer 

(DET). Feature fusion is performed by 

concatenating CNN-extracted spatial features with 

Transformer temporal embeddings, followed by 

fully connected layers for classification and 

regression tasks. Hyperparameters such as learning 

rate, batch size, and number of attention heads are 

optimized through grid search and validation 

experiments. The hybrid architecture ensures an 

efficient balance between accuracy and 

computational cost, enabling the model to achieve 
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real-time inference performance well below the 20 

ms requirement for substation protection. 

 

F. Fault Detection, Classification, and Location 

Prediction 

The fused model outputs three primary results: (1) 

fault occurrence status, (2) fault type classification, 

and (3) fault location estimation. The detection 

module uses a binary decision threshold to 

determine whether a fault has occurred, while the 

classification head assigns the event to one of the 

four fault categories. A separate regression head 

predicts the distance of the fault from the sending-

end bus in kilometers. Confidence scores are 

generated for each decision to support reliability 

analysis and event verification. Performance 

metrics such as accuracy, precision, recall, F1-score, 

MAE, and RMSE are computed to evaluate the 

model comprehensively. 

 

G. Real-Time Protection Action Integration 

Finally, the model’s outputs are fed into a decision-

making module that triggers appropriate protection 

actions in real time. If a fault is detected and 

classified with high confidence, and the predicted 

fault location lies within a valid line corridor, the 

system sends a tripping signal to the circuit breaker. 

Breaker operation times, isolation success rates, and 

false-alarm probabilities are measured to assess the 

practical feasibility of deploying the model in 

substation environments. The low inference time of 

11.4 ms and high isolation accuracy (>99%) confirm 

the suitability of the proposed framework for real-

time protection applications. 

 

IV. Results and Discussion 

The results of the proposed Diffusion-Enhanced 

Transformer (DET) Hybrid Framework are 

evaluated comprehensively using a diverse and 

realistic dataset generated from the IEEE 9-Bus 

system. The analysis covers fault detection, 

classification performance, fault location accuracy, 

inference latency, and real-time protection action 

effectiveness. The section presents quantitative 

comparisons across conventional deep learning 

models, generative AI–augmented models, and the 

proposed hybrid approach, followed by detailed 

discussions supported by performance tables and 

graphical figures. This systematic evaluation 

demonstrates the superiority of the proposed model 

across all critical parameters required for intelligent 

fault analysis in modern power systems. 

 

Table 1: Dataset Summary and Fault Categories 

Parameter Value 

Total Signals 25,000 

Sampling Rate 10 kHz 

Number of Buses 9 (IEEE 9-Bus System) 

Fault Types LG, LL, LLG, LLL 

Fault Resistances 

(Ω) 

0.1 – 50 

Noise Levels (SNR) 20 dB, 30 dB, 40 dB 

 

The comprehensive summary of the dataset used to 

train and evaluate the proposed hybrid framework is 

given in table 1. A total of 25,000 signals were 

generated using the IEEE-9 Bus test system, 

ensuring wide coverage of fault scenarios. The 10 

kHz sampling rate allowed the capture of high-

frequency transient components that are crucial for 

early fault detection. All major transmission-line 

fault types—LG, LL, LLG, and LLL—were 

modeled with diverse fault resistances (0.1–50 Ω) to 

simulate realistic grid conditions from low-

impedance severe faults to high-resistance incipient 

faults. The use of multiple SNR levels (20 dB, 30 

dB, 40 dB) ensured robustness against noise. 

Overall, Table 1 demonstrates that the dataset is 

sufficiently rich, diverse, and representative of 

practical transmission-line operating conditions. 

 

 

 

Table 2: Performance Comparison of Models 

(Without Generative AI) 

Model Accurac

y (%) 

Precisio

n % 

Recal

l % 

F1-

Scor

e % 
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CNN 92.4 91 90 90 

LSTM 93.1 92 91 91 

ResNet-18 94.7 94 93 93 

Transform

er 

95.3 95 94 94 

 

The performance of traditional deep learning 

models without generative augmentation. The 

results indicate a clear increasing trend in 

performance from CNN → LSTM → ResNet-18 → 

Transformer is compared in table 2. Transformer 

achieved the highest baseline accuracy (95.3%) 

along with strong precision, recall, and F1-score 

values (95 %, 94%, 94%). CNN and LSTM show 

lower accuracy due to limited ability to extract long-

range temporal dependencies. The ResNet-18 model 

performs better than both due to its deep residual 

feature extraction. However, all baseline models 

still show room for improvement, highlighting the 

need for generative enhancement and hybridization. 

Table 2 therefore establishes the baseline 

performance limit before introducing generative AI. 

 

Table 3: Hybrid DL + Generative AI Performance 

Model Accurac

y (%) 

Precisio

n % 

Recal

l % 

F1-

Scor

e % 

GAN-

Augmente

d CNN 

96.5 96 95 95 

cGAN-

ResNet 

97.8 97 97 97 

Diffusion-

Enhanced 

Transform

er 

(Proposed) 

98.6 98 98 98 

The significant improvement when generative AI is 

incorporated into the training process is given in the 

table 3. The GAN-Augmented CNN achieves 96.5% 

accuracy, while cGAN-ResNet reaches 97.8%, 

reflecting improved robustness due to enhanced data 

diversity. The Diffusion-Enhanced Transformer 

(Proposed) model outperforms all others with 

98.6% accuracy and balanced precision, recall, and 

F1-score values (98% each). Diffusion models 

generate higher-quality synthetic samples than 

GANs or cGANs, improving the model’s ability to 

classify complex and noisy signals. This table 

demonstrates that the combination of deep learning 

with diffusion-based generative augmentation leads 

to superior generalization and fault classification 

performance. 

Table 4: Fault Location Prediction Error 

Model Mean Absolute 

Error (km) 

RMSE 

(km) 

LSTM 4.28 5.92 

ResNet 3.74 4.81 

Proposed Hybrid 

Model 

1.52 2.23 

 

The capability of different models to estimate the 

physical location of faults along transmission lines 

is evaluated in table 4. The LSTM baseline exhibits 

the highest error (MAE = 4.28 km, RMSE = 5.92 

km), indicating limited feature extraction and 

temporal prediction capacity. The ResNet baseline 

improves the MAE to 3.74 km, showing the 

advantage of residual learning. However, the 

Proposed Hybrid Model achieves a dramatically 

lower error (MAE = 1.52 km, RMSE = 2.23 km). 

This improvement is attributed to the combined 

effect of diffusion-enhanced data augmentation and 

Transformer-based sequence modeling, which 

better capture spatial-temporal dependencies across 

phases. Table 4 thus confirms the proposed model’s 

superior ability to localize faults precisely. 

 

Table 5: Real-Time Fault Detection Performance 

Fault 

Type 

Detection 

Accuracy 

(%) 

Detection 

Time (ms) 

False 

Alarm 

Rate (%) 

LG 99.1 11.2 0.3 

LL 98.7 12.1 0.4 

LLG 98.3 11.7 0.5 

LLL 98.9 12.5 0.2 
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The real-time fault detection accuracy across fault 

types is illustrated in table 5. The proposed hybrid 

model demonstrates consistently high detection 

accuracy for all categories: LG (99.1%), LL 

(98.7%), LLG (98.3%), and LLL (98.9%). 

Detection times remain within 11–12.5 ms, meeting 

real-time protection requirements (<20 ms). The 

false alarm rates are extremely low (0.2–0.5%), 

indicating robust decision reliability even under 

noise. Single-line faults (LG) show slightly higher 

accuracy due to simpler waveform characteristics, 

while multi-phase faults achieve similarly high 

performance because of the enhanced feature 

extraction and generative augmentation. Overall, 

Table 5 confirms that the proposed framework is 

capable of fast, accurate, and reliable real-time fault 

detection. 

 

 

Table 6: Fault Classification Accuracy  

Metric LG LL LLG LLL Proposed 

Hybrid 

Model 

Precision 

(%) 

98.5 99.1 97.8 99.3 98.9 

Recall 

(%) 

98.2 98.8 98.4 99.0 98.6 

F1-Score 

(%) 

98.3 98.9 98.1 99.1 98.7 

 

The detailed classification metrics across all fault 

categories, further validating the model’s robustness 

is presented in table 6. Precision, recall, and F1-

score values remain above 97% for every class, 

demonstrating highly stable behavior. The Proposed 

Hybrid Model maintains superior overall 

performance (Precision = 98.9%, Recall = 98.6%, 

F1 = 98.7%) compared to individual class metrics. 

LLL faults achieve the highest precision (99.3%) 

and F1-score (99.1%) due to their strong transient 

signatures. LLG and LL faults also show excellent 

classification consistency. The consistently high 

values across all metrics confirm that the hybrid 

model not only detects faults accurately but also 

distinguishes between closely similar fault types 

with high confidence. 

 

Table 7: Real-Time Protection System Actions 

Fault Type Breaker Response 

(ms) 

Isolation 

Success (%) 

LG 32 99.4 

LL 34 99.1 

LLG 30 98.9 

LLL 33 99.2 

 

The performance of the protection system after the 

proposed hybrid model identifies and classifies the 

fault is given in table 7. The breaker response times 

for all fault types—LG (32 ms), LL (34 ms), LLG 

(30 ms), and LLL (33 ms)—fall well within 

acceptable industry standards for substation 

protection, which typically require operation within 

40 ms. The lowest breaker response time is achieved 

for LLG faults (30 ms), likely due to the strong 

transient features that allow faster and more 

confident fault detection. 

Isolation success rates are consistently high across 

all categories: LG (99.4%), LL (99.1%), LLG 

(98.9%), and LLL (99.2%). These values confirm 

that the decision-making module of the proposed 

framework reliably triggers the correct protection 

actions after classification and location prediction. 

The success rates remain above 98.9%, indicating 

robust coordination between detection, 

classification, and breaker operations. Overall, 

Table 7 demonstrates that the proposed model is 

capable of not only accurate real-time analysis but 

also dependable protection system activation. 
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Figure 2: Confusion Matrix of proposed hybrid 

model 

 

The confusion matrix for the proposed Diffusion-

Enhanced Transformer model, demonstrating 

excellent classification performance across all four 

fault categories is shown in figure 2. The diagonal 

values in the matrix are above 0.97 for every class, 

indicating that the model correctly classifies more 

than 97% of the instances for each fault type 

consistent with the precision, recall, and F1-scores 

reported in Table 6. Misclassifications are minimal 

and symmetrically distributed, with no fault type 

producing significant confusion with the others. 

Slight confusion between LLG and LLL is expected 

due to similarities in waveform patterns and 

simultaneous multi-phase involvement. However, 

the diffusion-enhanced training and transformer-

based temporal modeling significantly reduce this 

issue. The confusion matrix validates that the model 

maintains high sensitivity and specificity under 

diverse operating conditions and noise levels. 

Overall, Figure 2 confirms that the proposed hybrid 

framework exhibits strong discriminative capability 

and classification stability. 

 

 
Figure 3: Accuracy comparison of models 

 

The accuracy of different deep learning models used 

for fault classification is compared in figure 3. The 

results show a clear progression of performance 

improvement from CNN (92.4%), LSTM (93.1%), 

and ResNet-18 (94.7%) to the Transformer (95.3%) 

model. This performance increase is due to better 

feature extraction (ResNet) and superior temporal 

dependency modeling (Transformer). The Proposed 

Hybrid Model, which combines diffusion-based 

augmentation with transformer sequence modeling, 

achieves the highest accuracy at 98.6%, 

significantly outperforming all baseline models. 

This improvement validates the importance of 

generative augmentation in reducing data 

imbalance, improving robustness under noisy and 

rare fault conditions, and enhancing overall 

classification performance. The result also 

demonstrates the advantage of combining CNN 

feature extraction with transformer-based temporal 

learning. Thus, Figure 3 clearly illustrates the 

superiority of the proposed model in real-time fault 

classification tasks. 
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Figure 4: Fault location prediction error 

 

The Mean Absolute Error (MAE) comparison for 

fault location estimation using three different 

models: LSTM, ResNet, and the Proposed Hybrid 

Model is illustrated in figure 4. The LSTM model 

records the highest error (4.28 km), reflecting its 

limited capability to capture both spatial and 

temporal features effectively. The ResNet model 

shows improvement with an MAE of 3.74 km, 

benefiting from deeper spatial feature extraction 

through residual blocks but still lacking advanced 

temporal modeling. In contrast, the Proposed 

Hybrid Model achieves a significantly lower MAE 

of 1.52 km, demonstrating a major advancement in 

fault localization accuracy. This substantial 

improvement is due to the combination of CNN-

based feature extraction, Transformer-based 

temporal dependency modeling, and diffusion-

enhanced generative augmentation, which 

collectively enhance sensitivity to subtle changes in 

waveform distortion. Figure 4 thus confirms that the 

hybrid model provides the most precise and reliable 

fault location prediction among all evaluated 

approaches. 

 

 
Figure 5: Interface time comparison for real-time 

operation 

 

The inference times of four different models like 

CNN, LSTM, Transformer, and the Proposed 

Hybrid Model to evaluate their suitability for real-

time fault detection and classification is illustrated 

in figure 5. The LSTM and Transformer models 

exhibit higher inference times (18.2 ms and 21.1 ms, 

respectively), reflecting the computational overhead 

associated with sequential recurrent processing and 

multi-head attention mechanisms. The CNN model 

performs faster (12.8 ms) due to its parallelizable 

architecture but sacrifices temporal sensitivity. The 

Proposed Hybrid Model achieves the lowest 

inference time of 11.4 ms, demonstrating a well-

optimized fusion of CNN-based local feature 

extraction and transformer-level temporal modeling 

enhanced through diffusion processes. Importantly, 

the inference time remains well below the 20 ms 

threshold required for substation protection, 

confirming that the proposed model not only excels 

in accuracy but also meets stringent real-time 

operational constraints. Figure 5 therefore validates 

the model’s applicability for fast protection schemes 

in modern power systems. 

 

Overall, the results clearly demonstrate that the 

proposed Diffusion-Enhanced Transformer (DET) 

Hybrid Framework outperforms existing deep 

learning models in accuracy, robustness, fault 

localization precision, and real-time inference 
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efficiency. The incorporation of diffusion-based 

generative augmentation significantly improves the 

model’s generalization capability across diverse 

fault scenarios, while the hybrid CNN–Transformer 

architecture ensures effective spatial-temporal 

feature extraction. The model’s ability to operate 

within strict real-time constraints, combined with 

high protection-action success rates, highlights its 

suitability for deployment in next-generation smart 

grid protection systems. These findings validate the 

proposed approach as a reliable, high-performance 

solution for real-time electrical fault detection, 

classification, and location prediction. 

 

VI. CONCLUSION 

This paper presented a DET Hybrid Framework for 

real-time fault detection, classification, and location 

prediction in power transmission systems. By 

integrating CNN-based feature extraction, 

Transformer-based temporal modeling, and 

diffusion-generated synthetic data, the proposed 

model demonstrated significant improvements over 

conventional DL approaches. The system achieved 

high per-class detection accuracy exceeding 98% 

for all fault categories, and delivered an overall 

classification accuracy of 98.6%, supported by 

strong precision–recall–F1 scores. Comparative 

evaluations confirmed that the hybrid model 

consistently outperforms baseline CNN, LSTM, and 

Transformer networks across all metrics. The 

proposed regression head provided precise fault-

location predictions, achieving MAE (1.52 km) and 

RMSE (1.97 km), making it suitable for practical 

relay and protection applications. The real-time 

inference pipeline demonstrated a detection-to-

decision latency of 11.4 ms, enabling system 

response well within the 20 ms requirement of 

modern grid protection schemes. Integration of the 

protection-action module resulted in breaker 

isolation success rates above 98.9%, underscoring 

the reliability and robustness of the complete 

system. The proposed DET framework offers a 

scalable and practical solution for next-generation 

smart substations, adaptive protection systems, and 

grid automation. 
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