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Abstract— Named Data Networking (NDN) has emerged as a promising architecture to improve the efficiency and scalability 
of content retrieval by focusing on content names rather than host addresses. A core component of NDN is caching, which 
enables frequently accessed contents to be stored closer to consumers, thereby reducing latency and bandwidth consumption. 
This paper presents a comprehensive survey of caching strategies in NDN, covering both traditional approaches (e.g., FIFO, 
LRU, LFU, RR ) as well as advanced methods such as probabilistic, machine learning-based, and PIT/FIB-aware caching. The 
strengths and limitations of each strategy are analysed, and their impact on performance metrics such as cache hit ratio, latency, 
and resource utilization is discussed. Finally, the paper highlights open challenges and research directions to guide the 
development of more intelligent and adaptive caching solutions in NDN.   
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I. INTRODUCTION 

The Named Data Networking (NDN) has developed as a 
viable alternative to the traditional TCP/IP-based networking 
paradigm by emphasising content dispatching rather than 
host-to-host communication. Unlike conventional networks, 
NDN integrates in-network caching, reducing data retrieval 
latency and improving bandwidth utilization. Still, optimising 
caching strategies remains a big challenge due to the dynamic 
nature of data content popularity and the scalability demands 
of modern usage. This survey examines recent studies on 
caching strategies in NDN, providing a classification of 
approaches and identifying research gaps to guide future work. 
Several research papers have been published regarding 
caching strategies in NDN. In the study [1], the authors 
proposed a Graph Neural Network (GNN)-based caching 
approach, which performed better than basic strategies such as 
LFU and LSTM-ED in terms of cache hit ratio and latency 
reduction. Similarly in the research paper [2] authors has 
discussed the importance of NDN-based caching for indoor 
positioning systems, showing how it reduces server load 
compared to traditional architectures as well as the authors 
found that after applying NDN-based indoor positioning and 
navigation system with previous algorithm the improvements 
achieved  in the position of  floor detection, localization and 
navigation by 77%, 33% and 99 % respectively.  In [3], the 

authors introduced a social-aware caching method, where 
selecting influential consumers in Online Social Networks  
 
(OSNs) slightly improved cache hit ratios, thereby reducing 
network traffic and operational cost in self-operated content 
delivery networks. Although these advancements exist, 
existing caching strategies are often based on static or 
historical data to determine content popularity, limiting their 
effectiveness in dynamic environments such as real-time 
streaming platforms and social media. Moreover, many 
researchers do not consider features from both the Pending 
Interest Table (PIT) and Forwarding Information Base (FIB) 
in cache decision-making, leading to suboptimal performance 
in high-traffic networks. Additionally, most AI/ML-based 
caching approaches rely on supervised learning, requiring 
labelled datasets and large-scale training, which makes them 
complex and impractical for real-time decision-making in 
NDN, even though routers maintain local tables for 
forwarding requests. 
 

Despite the wide range of caching strategies proposed in 
NDN. Although few studies have explored the cache 
replacement technique based on Meta data of FIB table, the 
research that combined both the pending interest table and 
Forwarding Information Base remain scarce. This lack of PIT-
FIB aware design leads to suboptimal performance in named 
data networking with highly dynamic and large scale 
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environment. Therefore, the central problem addressed in this 
study is the absence of an intelligent caching strategy that 
jointly leverages PIT and FIB information to make adaptive, 
real-time caching decisions. Besides the limited use of PIT-
FIB information in caching strategies there is a lack use of 
model free machine learning to enhance the caching strategy. 
The rest of this paper is organised as follows: Section 2 
presents the research methodology used for selecting and 
analysing relevant studies. Section 3 provides a system 
overview. Section 4 reviews existing literature on caching in 
NDN. Section 5 compares various caching strategies through 
qualitative analysis. Section 6 discusses research gaps and 
limitations. Section 7 highlights current challenges and 
emerging trends. Section 8 outlines future research directions, 
and Section 9 concludes the paper by summarising key 
findings. 

 
II.  RESEARCH METHODOLOGY 

 
 This review primarily focuses on research articles published 
between 2020 and 2025, reflecting the most recent 
developments in caching strategies for Named Data 
Networking (NDN) under the broader Information-Centric 
Networking (ICN) paradigm. Foundational works published 
between 2010 and 2019 were also included to provide 
historical context and to illustrate the evolution of caching 
techniques. The search strategy involved querying multiple 
digital libraries, including IEEE Xplore, SpringerLink, 
ScienceDirect, ACM Digital Library, and Google Scholar. 
Search keywords included combinations of: “Named Data 
Networking”, “Information-Centric Networking”, “caching 
strategies”, “content store”, “machine learning”, 
“reinforcement learning”, “PIT”, and “FIB”. Boolean 
operators (AND/OR) were used to refine search results, and 
both title/abstract and full-text searches were performed. 

A. Purpose and Scope: 

The purpose of this review is to provide a broad overview 
of caching strategies in Named Data Networking (NDN) 
and their impact on network performance. The review 
describes the evolution of cache placement and cache 
replacement techniques, from basic static methods to 
adaptive and machine learning–based approaches. Its 
scope covers research works published between 2020 and 
2025, while also referring to foundational studies (2010–
2019) to give historical context on on-path caching and 
cache replacement strategies. The review highlights key 
strategies, simulation tools, and evaluation metrics used in 
the literature, offering new researchers a clear 
understanding of developments in NDN caching. 

B. Inclusion Criteria: 

a) Research published in peer-reviewed journals or 
conferences. 

b) Papers focusing on caching strategies within NDN or 
ICN, including both AI/ML-based and non-AI 
approaches. 

c) Studies providing simulation-based, analytical, or 
experimental performance evaluation. 

d) Articles written in English. 

C.  Exclusion Criteria: 

a) Works unrelated to NDN caching (e.g., general web 
caching not within ICN context). 

b) Articles without performance evaluation or technical 
discussion. 

c) Non-peer-reviewed content such as theses preprints 
without peer review, blogs, or presentations. 

The initial search yielded 120 articles. After removing 
duplicates and applying the inclusion/exclusion criteria, 46 
relevant research papers were selected for detailed analysis. 
These were then categorized by publication year to identify 
trends and assess the progression of NDN caching research. 

III.  System OVERVIEW  

A. Comparison between NDN and Traditional IP Networks 

This NDN architecture provides more efficient data fetch 
and reduces the reliance on traditional IP-based routing 
methods; ultimately it improves overall network performance 
and user experience in terms of delay and throughput 
[4].Current network is based on TCP/IP protocol suit where 
network works on end to end connectivity of devises and It 
starts from application layer to physical layer and vice versa to 
deliver data through the concept of transmission, logical 
addressing, forwarding etc. the main objective  is that the 
routers use in the traditional network is not for data caching, it 
use only for to provide the best route to data packets. So 
processing of all steps in IP network is time taking and if any 
data lost during transmission then the data must be 
retransmitted from original source where NDN is based on the 
concept of content centric whatever the rule and regulation 
needed are surrounded towards data. The tradition network 
and NDN could be distinguish with many parameters like 
DNS, Message types, packet formation, logical addressing, 
types of connection etc. [5]. 
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B. Working of NDN 

The main architecture of Named Data Networking is based 
on the concept of content-centric networking, where data is 
retrieved based on its content name rather than its location. As 
in Fig. 1, we can easily see that every node in the NDN just 
responds to the request if the node is not fulfilling the request, 
it will forward the request. Whenever the consumer requests 
to network the nearest router will respond if it has the contents 
otherwise it will send it to the next router to obtain the content 
If the next router also has no content, then send it to next node, 
this process will continue until it reaches to producer. At last 
producer will send the content to the same path from which 
the interest packet came. It has five components. 
1. PIT (Pending Interest Table 
2. FIB (Forwarding Information Base)  
3. CS (Content Store)  
4. Consumer 
5. Producer 
 

These components work together to manage data requests, 
cache content locally for faster access, and ensure that 
interests are forwarded efficiently throughout the network. 
Now to understand the background of NDN we can refer to 
Fig. 2, where the consumer needs to access a specific piece of 
content; it sends a request as an interest packet which contains 
the name of the desired data into the network. The router 
which has CS (content Store) checks whether the requested 
content of consumer is available in the cache memory. If it is 
found, the router retrieves the content from the CS and sends 
it back to the consumer, significantly reducing latency. If the 
content is not available in the cache, the interest packet is 
forwarded through the FIB to locate the producer that holds 
the requested data then router based on the interest writes the 
pending interest in the PIT (Pending Interest Table), allowing 
it to track which interests are still unresolved. This mechanism 
ensures that once the data is retrieved from the producer, all 
waiting consumers can receive the content simultaneously, 
further optimising network efficiency and resource utilisation. 
After maintaining the PIT, the router forwards the interest 
based on FIB to the appropriate next hop, ensuring that the 
request reaches its destination promptly. This process not only 
enhances data retrieval speed but also minimises unnecessary 
traffic across the network, contributing to a more streamlined 
and responsive communication system also discussed [6].  

 
         Fig. 1.  Architecture of NDN Networking 

 
    Fig. 2. Caching procedure [7], [8] 

C. NDN Communication Workflow Using PIT, FIB, and 
Caching 

The NDN communication is based on maintaining two 
tables i.e. PIT and FIB, the detailed mechanism which is 
explained in Fig (3) and Fig. (4) Where it shows how NDN 
initially works before and after caching. Figure 3 shows how 
to request first time from the consumer to the producer. When 
first time a consumer wants any data, it firstly generates an 
interest packet and sends it to the nearest router to process the 
request. In figure it is shown that there are two consumers 1 
and 2 who want to access data content c1 and c2 respectively 
which are produced by producers 1 and 2. Consumer first and 
consumer second generate the interest 1 and interest 2 
messages respectively both consumers send the request to the 
nearest router R1. There are totally three routers between the 
consumer and producer i.e. R1, R2 and R3. At router R1 when 
request packets i.e. Interest 1 and Interest 2 reach router R1, 
R1 checks its content store if requested data packets are 
available then it provides them to the consumer. In Figure (3) 
the content store is empty then router R1 sends to the next 
node after updating the PIT i.e. pending interest table where 
router1 checks whether any earlier request for the same is in 
pending in PIT if not then it writes the request in the PIT. 
Here R1 wrote interest 1 and interest 2 in PIT. And according 
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to the routing information of FIB, router 1 will forward the 
request to the next node. In FIB of R1, it is mentioned that for 
interest 1 and interest 2, they go to router 2 and the same 
course of action router 2 has done. When the request will 
reach router 3 it sends the appropriate producer for the 
fulfilment of interest1 and interest2. In fig. (4) Which shows 
how data packets of content c1 and c2 are delivered to 
consumer1 and consumer2 respectively. When content c1 and 
c2 found in producer 1 and producer 2 they send it to the same 
return path of interest. It is sent to first router R3 and R3 
stores the content c1 and c2 in its content store and then it 
deletes the previous pending request from its own PIT table 
accordingly and updates the FIB for the content c1 and 
c2.Then it sent the contents to the next router R2 from which 
the interest received previously continuously repeat the same 
action at the router R2 i.e. copy the content in its own content 
store and delete the pending request from PIT table and update 
FIB table. In this way, the content c1 and c2 are delivered to 
the consumer 1 and consumer 2. Now the content is cached at 
the routers R1, R2 and R3.If the same data request is 
generated by  consumers then it will be  fulfilled by router 
R1.By this procedure we can achieve fast delivery of data 
packets for the same request. So we can say that caching is the 
way by which we store the contents of routers between the 
consumer and producer. 

 
                        Fig. 3. Consumer to producer [9] 

 
                       Fig. 4.  Producer to consumer [9] 

 

IV. CONCLUSIONS 

 

                              
   There are various caching strategies which store the data 
between the consumer and producer. The caching is 
divided into two parts: cache placement and cache 
replacement. This paper provides an overview, 
classification, and research directions, offering a 
comprehensive literature survey focusing on caching 
strategies within Named Data Networking (NDN). 
Caching is generally categorized as on-path caching and 
off-path caching. Various caching strategies have been 
developed for NDN, emphasising the shift from traditional 
IP-based networking to a content-centric approach. In-
network caching stores data at intermediate nodes rather 
than just at the endpoints, improving cache hit rates and 
minimising retrieval hops. Similarly, content replication 
enhances data availability by distributing multiple copies 
across caching nodes, reducing network traffic and 
improving overall performance. However, the majority of 
approaches rely on concepts such as node popularity, 
content popularity, content priority, content diversity, 
routing, producer mobility, energy consumption, 
information sharing, learning-based caching, indexing-
based caching, and some on the integration of CS and PIT. 
There are many caching algorithm has been developed and 
simulated using ndnSIM [8], [10]. 

 
A. Recent Research Trends  

The review paper [11] surveys caching strategies in 
Named Data Networking (NDN) from 2015 to 2021 and 
offers a structured map of the literature by publication 
venue, application domain, modern strategy families, and 
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simulation environments. It contrasts foundational 
replacement baselines—FIFO, LFU, and LRU—with 
popularity-aware and learning-based methods, and 
distinguishes cache placement from replacement, which is 
helpful for clarifying the decision points in the content 
lifecycle. On the placement side, the paper summarizes 
algorithms such as BEACON (betweenness-aware 
popularity estimation), DLCPP and SAE (deep models for 
popularity prediction), CPC (cache capacity control), 
Bloom-filter–based designs, green caching/routing, EHCP 
(energy-aware hybrid placement), and MAED (Markov 
approximation for energy–delay trade-offs). The review 
also notes the emergence of Q-learning and other ML 
techniques, along with compound popularity models, 
signalling a shift toward adaptively. Crucially, the paper 
also touches on cache replacement and enumerates a range 
of strategies beyond the classical baselines. These include: 
ANFIS-based replacement (leveraging a false-locality 
parameter to counter locality-disruption attacks), Universal 
Caching (UC) (reported to outperform traditional policies 
across scenarios), Deep Cache (deep learning–based 
popularity prediction for eviction), LSTM encoder–
decoder approaches (time-series modelling of content 
popularity), Atomic Caching (replacement guided by 
overlapping name prefixes), On-the-Fly Caching 
(restricting storage to cache-specific prefixes), BEP 
(Betweenness and Edge Popularity) (node-centric 
popularity for eviction), VNDN-oriented policies 
(frequency-driven replacement for vehicular settings), 
LFF—Least Fresh First (freshness-centric eviction for 
IoT), and FDC—Freshness-Driven Caching for vehicular 
NDN (incorporating content lifetime). By grouping these 
techniques, the review helps readers see the design space 
ranging from topology-aware to freshness- and ML-driven 
policies. That said, the analysis in [5] remains primarily 
descriptive. It does not provide discrete, metric-based 
comparisons across a standard testbed or common traces. 
In particular, it does not evaluate strategies using core 
NDN metrics such as cache hit ratio, latency, content 
diversity, hop count, content stretch, link load, content 
redundancy, inter-domain traffic, energy consumption, or 
server load. Nor does it present side-by-side benchmarking 
under identical topologies or workloads, which would 
enable statistically grounded conclusions about efficiency, 
scalability, or robustness to popularity shifts. Additionally, 
integration with PIT/FIB-aware signals in the replacement 
decision—an area with growing interest—receives limited 
empirical treatment. Implication and research gap. While 
this research paper is valuable as a landscape survey and 
taxonomy, its lack of quantitative, head-to-head evaluation 

limits prescriptive guidance for practitioners. This gap 
motivates the present work: a systematic, metrics-driven 
comparison of classical (FIFO, LFU, LRU) and advanced 
replacements (ANFIS, UC, Deep Cache, LSTM-based, 
Atomic, On-the-Fly, BEP, VNDN-specific, LFF, FDC), 
ideally under controlled topologies (e.g., 2 consumers, 2 
producers, 5 routers) and dynamic workloads, with 
reporting on the full metric suite listed above. Extending 
this with PIT/FIB-aware decision signals and model-free 
RL (e.g., Q-learning) would further test adaptivity to non-
stationary popularity, providing the empirical evidence 
missing from the current review.The study in [11] where 
authors have proposed new system model which maintains 
two tables IST and IRT and they discusses a cache 
placement technique based on compound popularity, 
which combines both content popularity and node 
popularity. In this approach, content is divided into global 
popularity and local popularity. By considering both 
content popularity and node popularity, the caching 
strategy can make more informed decisions about where to 
store content. Authors have also discussed modern caching 
strategies in NDN such as cache capacity-aware CCN, 
spanning tree heuristic and distributed algorithms, 
distributed and reconfigurable DL based on SDN, green 
caching, routing-efficient hybrid content placement, node 
popularity, content popularity, active edge caching 
algorithms, etc. In the paper [12]  authors proposed the 
CAL i.e. Cache Aging with Learning method for IoT 
network which is eight step processes to manage and 
process data freshness with using specific formula. It uses 
prediction mechanism which is based on Nonlinear 
Autoregressive (NAR) neural network so that it can 
increase the cache hit ratio. This neural network model is 
based on past traffic pattern and does not account for real 
time network conditions. This limitation reduces its 
adaptability towards sudden changes in content popularity.  
In the paper [13], authors proposed a machine learning 
approach using Apriori algorithm to predicts and cache 
frequently accessed data so that cache hit ratio will be 
increased. Authors are used Apriori algorithm which is 
supervised learning algorithm to find the association rules 
and based on that it predicts the next requested data, 
means it uses prior knowledge of frequent item sets. In this 
paper authors shown the performance of recommended 
machine learning algorithm with LRU and prove that 
apriori based algorithm perform high cache hit ratio. Still 
this algorithm was based on real time data sets of traffic 
for analysis with single metrics i.e. cache hit rate. The 
work does not leverage based on more performance 
metrics like network traffic load, server hit rate with 
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considering current data analysis i.e. real time NDN 
specific information. In the paper [14] the authors 
proposed an intelligent caching method for vehicular 
networks using deep transfer learning. The approach 
introduced a time-varying mechanism to predict content 
popularity, supported by a customized hybrid neural 
network model. The model was trained in three stages to 
identify and replace less popular content with more 
popular content in the cache. While the method 
demonstrated its capability to improve content delivery by 
predicting popularity trends, the evaluation was conducted 
entirely in MATLAB rather than in a network simulation 
environment such as ndnSIM. This limits the assessment 
of the method’s performance under realistic NDN 
conditions with real-time network dynamics. 
The paper [15] introduces the CRPM (Cache Replacement 
Policy based on Multi-factors) for NDN, which calculates 
a "cache value" for each content item using a weighted 
combination of parameters such as popularity, acquisition 
cost, energy consumption, and freshness. Content with the 
lowest value is evicted. The authors validated CRPM on a 
simple linear topology, leaving a clear path for future 
research. To fully assess CRPM's potential, researchers 
should test it on diverse NDN topologies like fat-tree or 
mesh. Furthermore, a more comprehensive evaluation is 
needed using NDN-specific metrics like average interest 
satisfaction latency, number of hops saved, and the 
policy's impact on network congestion. This would 
provide a more robust understanding of CRPM's 
performance and applicability in real-world NDN 
environments. For instance, paper [16] introduced a 
probability-based eviction mechanism that considers 
content popularity distribution. The scheme assigns each 
item a probability of being retained or removed, balancing 
storage between popular and less popular content. 
Analytical models were developed to compute average 
miss probabilities across multi-level cache networks. The 
approach reduces redundancy compared to naive caching 
but relies on accurate and relatively stable popularity 
estimation. While theoretically sound, the lack of adaptive 
mechanisms and real-world validation limits its scalability 
in dynamic NDN environments. Where the paper [17] in 
this paper authors proposed a Popularity and Gain Based 
Caching Scheme (PGBCS) for ICNs that considers both 
the popularity of content chunks and their caching gain to 
guide caching decisions. The authors emphasised the 
dynamic nature of content value, suggesting that 
frequently requested data should be retained longer. 
Simulation results showed improvements in cache hit ratio, 
user access delay, and service quality compared to 

conventional strategies. However, the approach still 
requires validation in diverse real-world network settings. 
The paper [18] proposed a model for video content 
caching that prioritises items likely to be accessed again, 
improving efficiency. Beyond single-metric policies, 
multi-factor approaches incorporate additional parameters, 
such as content size, request frequency, and user distance. 
However, the approach mainly considers popularity and a 
few network parameters, limiting its adaptability to highly 
dynamic network conditions and diverse content types. 
The study [9] provides an extensive review of caching 
techniques in NDN. It first highlights the limitations of 
traditional location-based Internet architectures, such as 
network congestion and high latency, emphasising the 
need for efficient caching mechanisms in NDN to improve 
data retrieval. The study discusses various caching 
techniques, particularly popularity-based caching, which 
prioritises repeatedly requested data content to increase 
cache hit ratios and maximise network performance. A 
comparative analysis is conducted on multiple caching 
strategies, including Compound Popular Content Caching 
Strategy (CPCCS), Max-Gain In-network Caching 
(MAGIC), and Hop-based Probabilistic Caching (HPC), 
evaluating their efficiency in reducing content redundancy, 
improving cache hit ratios, and alleviating network 
congestion. Furthermore, the paper explores the role of 
caching strategies in new technologies such as IoT, Fog 
Computing, Edge Computing, and 5G networks, 
emphasising their adaptability in dynamic environments. 
This study gives a presentation on cache replacement 
techniques that are used to replace the content from the 
cache when there is no space in memory. The cache 
replacement algorithm is classified into eight different 
types of techniques. These are (i) static (ii) space security 
(iii)content update (iv) centralised (v) Energy efficient (vi) 
weighted (vii)adaptive (viii)Dynamic Popularity. Some of 
the very well-known cache replacement static techniques 
are RR, LRU, LFU, and FIFO. These techniques are 
simple but not so effective. The study in [19] emphasises 
dynamic content popularity-based caching, which caching 
of popular content enhances the consumer retrieval rate in 
NDN networks where popularity is based on request 
cycles and the cache threshold is maintained according to 
every node's cache. Popularity changes over time. There 
are various proposed algorithms which has been developed 
so far to enhance the popularity For example the paper [20] 
proposed MPC, in which the node caches content whose 
popularity has gone beyond the threshold value. In the 
paper [21] proposed a cache method which was based on 
content popularity and router level, in this approach those 
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routers which are close to the consumer can cache high 
popularity content. Accordingly, the authors proposed two 
algorithms out of which one is for cache placement and 
another for cache replacement. In cache placement, the 
proposed policy is known as dynamic popularity cache-
placement (DPCP) which calculates the data content 
popularity based on the number of content requests in the 
current and past cycles. In cache replacement the proposed 
policy is based on replacement value (RVCS), this value 
will be calculated with the help of last popularity, request 
time and transmission cost. Content will be replaced if and 
only if the replacement value is low. The researchers in 
[18] had applied Graph Neural Network (GNN) to node 
level classification problem. They found that GNN is 
efficient for node-level, edge-level and graph-level 
prediction. In this study authors shown that there are 
various techniques had been developed so far based on 
content popularity by using neural network like deep 
learning-based content popularity prediction (DLCPP) to 
perform cache decisions in the SDN based ICN same as 
stimulate neural network (SNN) is used to make caching 
decision. The GNN-based cache replacement policy in 
NDN was the first proposed method in NDN caching. 
GNN is used to learn spatial dependency to collect the 
traffic data. It demonstrates how a GNN-based caching 
method can significantly reduce access latency by caching 
popular information close to the consumer. But still, there 
is some limitation in GNN like the statistical model used 
to generate users' content preferences may rely on 
assumptions that do not hold true in all contexts. If user 
behaviour significantly deviates from these assumptions, 
the effectiveness of the caching strategy could be 
compromised; leading to lower cache hit ratios than 
expected. There are so many assumptions that were made 
during the research for example users' content preferences, 
static user behaviour, network condition, cache space 
limitation and user request history If any one of them 
deviates then performance will go down.  
 

V. QUALITATIVE COMPARATIVE ANALYSIS OF EXISTING 

CACHING STRATEGIES 

Caching in NDN is a pivotal mechanism that enhances 
data retrieval efficiency by storing content at various 
network nodes. This approach not only reduces latency but 
also improves content availability, making it a promising 
alternative to traditional IP-based networks. Several 
innovative caching methodologies have been proposed to 
optimise performance in NDN environments. Essentially, 
there are two kinds of caching named is (i) On path 

caching and (ii) off-path caching as fig (5) shown. But 
some data caching techniques comes under both categories 
depending on its implementation. In this paper, we are 
only concerned with on-path caching. In on-path caching 
in Named Data Networking involves storing content at 
routers along the data path from producer to consumer, 
enhancing response times. However, it lacks the 
cooperative advantages of neighbourhood caching 
techniques, which improve performance through 
collaboration among neighbouring routers in content 
retrieval and caching decisions. 

        Fig. 5. Classification of caching 
 

A. Cache Placement and Replacement Strategies in NDN 
 
Caching is a fundamental component of the Named Data 
Networking (NDN) architecture, as it directly influences 
how and where data is stored within the network to 
enhance efficiency and reduce latency. Proper cache 
placement ensures that frequently accessed content is 
readily available, thereby minimizing redundant requests 
to remote servers and improving overall network 
performance. Cache replacement strategies further 
determine which data should be retained or evicted from 
the content store. As illustrated in Figure 5, static 
replacement strategies rely on pre-computed decisions; 
however, due to their inability to adapt to varying network 
dynamics, their effectiveness is limited in highly dynamic 
environments. Conversely, dynamic replacement strategies 
are designed to adapt to changing traffic patterns and 
content popularity, enabling more intelligent eviction 
decisions and enhancing data retrieval efficiency. To 
provide a comparative understanding, Table 1 summarizes 
A. cache placement techniques, B. static replacement 
policies, and C. dynamic replacement policies, along with 
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their respective advantages and disadvantages. 
 
                        Table 1. Cache Strategies 

A Cache Placement 

1.    Compound popularity based caching [11][22] 

M
ech

an
ism

 

Based on compound popularity, which combines both 
content popularity and node popularity 

P
aram

eters

: Metrics: CHR, Latency, Link Load 
Topology:Tiscali-3257, Tree topology 
simulator: Icarus 

A
d

v
an

tag
es 

(i) A proposed technique outperforms the four base 
line caching strategies across both topologies and all 
values of S. 
(ii) It achieves 41.2% CHR at S = 0.25 in Tiscali-
3257 topology, which is 5.1% higher than the second-
best (LCD at 36.1%). 
(iii) It provides 2.4% improvement over LCD when S 
= 0.05. 
(iv) In tree topology, the proposed scheme achieves 
an average CHR improvement of up to 3.1% 
compared to LCD and CL4M. 
(v) In terms of latency the proposed technique 
achieves the lowest latency in both Tiscali-3257 
(64.65 ms) and tree topology (66.2 ms). 
(vi) In Tiscali-3257, latency is 4.8% lower than LCD, 
9.9% lower than CL4M, 13.1% lower than 
ProbCache, and 12.1% lower than LCE. 
(vii) In tree topology, latency is 3.3% lower than 
LCD, 3.3% lower than CL4M, 8.3% lower than 
ProbCache, and 12.2% lower than LCE.  
(viii) It effectively utilizes edge caching (LPC and 
GPC), reducing consumer response time. 
(ix) Proposed scheme effectively reduces link load 
when cache size is large. 

D
isad

v
an

tag
es    

(i) Marginal Gains in Tree Topology for example 
CL4M performs nearly as well as LCD, with CHR 
values close to 36–37%, which narrows the relative 
improvement margin of the proposed scheme. 
(ii) Consistently achieves higher cache hit ratio than 
other strategies under the same cache sizes. 
(iii) In terms of latency CL4M and LCD have nearly 
equal latency in tree topology, narrowing the 
proposed scheme’s relative advantage. 
(iv) Performance gap is smaller in tree topology 
compared to Tiscali-3257. 
(v) All strategies benefit from larger cache sizes, 
reducing the relative improvement margin. 

A
d

v
an

tag
es 

(vi) Latency performance is nearly the same in both 
topologies under α = 0.8, S = 0.15, limiting topology-
specific insights. 
(vii) In tree topology, link load = 348.26 bytes, which 
is slightly worse (0.06% higher) than LCD (346.32 
bytes). 
(viii) Overall improvement is marginal with small 
cache sizes. 

2 Hop-Based Probabilistic Caching (HPC)[9], [10], 
[23] 

M
ech

an
ism

 

Utilizes two key factors—CacheWeighty and 
CacheWeightMRT—to optimize caching. 
CacheWeighty determines the probability of caching 
content based on the number of hops, while 
CacheWeightMRT sets the caching duration using the 
mean residence time (MRT) of the content. This 
probabilistic approach aims to reduce redundancy and 
manage caching along the consumer–producer path. 

M
etrics: 

Content Diversity, CHR, Content Redundancy, 
Stretch Ratio 
Topology: Linear Path Topology 
simulator: custom-built simulator[10],  
SocialCCNSim[9],[23] 

A
d

v
an

tag
e

s (i) Probability-based caching technique. 
(ii) achieves a low stretch ratio. 
(iii) Provides a better cache hit ratio. 
(iv) Performs better than many traditional caching 
strategies. 
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D
isad

v
an

tag
es 

(i) Does not prioritize less popular content. 
(ii) May lead to high redundancy. 
(iii) Increased memory consumption  
(iv) Low content diversity. 

3) WAVE  Popularity-based caching strategy 
[9], [24] 

M
ech

an
ism

 

A popularity-based caching technique that distributes 
data chunks across the network according to their 
content popularity 

P
aram

eters 

Metrics: Average Hop Count, Link Stress, Inter-ISP 
Traffic Reduction, Cache Hit Ratio, Cache 
Replacement Count, Caching Efficiency, Relative 
Hop Count and Number of Chunks. 
Topology: GT-ITM–generated hierarchical topology 
simulator: discrete event-driven simulator[24] 

A
d

v
an

tag
es 

(i) WAVE achieves the shortest average hop count, 
placing popular content closer to users and reducing 
retrieval delay.  
(ii) It reduces cache diversity because it only consider 
on popular content. WAVE caches early (low-index) 
chunks 8–15% closer to users. 
(iii) It reduces link stress by distributing content 
across multiple C-routers. 
(iv) WAVE caches more popular files locally, 
reducing inter-ISP traffic and lowering external server 
dependence.   
(v) Increasing file chunk count reduces unnecessary 
caching overhead. 
(vi) Reduces average cache management cost. (vii) It 
achieves a high cache hit ratio because each cached 
chunk is reused 23.5 times on average, at least 16× 
higher than competing schemes. 
(viii) lowers delay, shortens stretch ratio, and 
introduces fewer repetitions of similar content (less 
redundancy compared to HPC and CACC). 

D
isad

v
an

tag
es 

(i) Popularity-blind caching which achieves 
extremely poor efficiency (0.09 times per cached 
chunk). 
(ii) In-network caching like WAVE still requires at 
least one inter-ISP fetch for new content. 
(iii) It Consumes high memory and bandwidth, and 
may result in a lower cache hit ratio under certain 
conditions. 

4 Most Popular Cache(MPC)[9], [20] 

M
ech

an
is

m
 

Each node maintains a popularity table that tracks 
content names, popularity counts, and a threshold 
value. When the popularity count meets the threshold, 
the content is labeled as popular, prompting the router 
to recommend caching it to neighboring routers. 

P
aram

eters 

Metrics : 
CHR, Stretch,  Ratio of Cached Elements, Diversity 
Topology: 
Tree, Abilene, Tiger2, Geant, DTelekom, Level3 
Simulator: ccnSim, a chunk-level CCN simulator, 
developed in C++ over the Omnet++ framework[20] 

A
d

v
an

tag
es 

(i) Increases cache hit ratio by outperforming the 
default strategy. It achieves >85% hit ratio. 
(ii) Reduced Storage Overhead. 
(iii) It ensures efficient resource utilization.  
(iv) reduces network traffic. performs better than 
WAVE and CACC. (v) It improves overall network 
resource consumption. 

D
isad

v
an

tag
es 

(i) Lower Diversity; the MPC diversity: 3%–18%, 
much lower than CCN (28%–35%). 
(ii)Introduces communication overhead because it 
requires Popularity Table, Popularity Threshold, and 
Reset Value tuning, increasing complexity.  
(iii) Performance heavily depends on threshold 
selection. 
(iv) caching is biased toward nodes neighboring 
producers. 
(v) Topology Sensitivity. 
 

5 Leave Copy Every Where (LCE) [25] 

M
ech

an
ism

 

This is the simplest cache placement policy in Named 
Data Networking (NDN), where a data packet is 
cached at every node along the forwarding path 
between the consumer and the producer. 

P
aram

eters 

Metrics: 
Execution Time (Wall Clock Time), 
Memory Utilization (RAM) 
Topology: Binary Tree Network Topology 
Simulator: Icarus 
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A
d

v
an

tag
es 

(i) High Availability: Ensures content is highly 
available since it is cached at all nodes along the path, 
reducing latency for popular content. 
(ii) Reduced Traffic Load: By caching at multiple 
routers, requests can be served from the nearest 
cached node, lowering traffic overhead [15]. 
(iii) Performance Evidence: LCE reduced RTT by 
82% and outperformed LCD in comparative 
evaluations  [26]. 

D
isad

v
an

tag
es 

(i) Redundancy: Excessive duplication wastes cache 
space and bandwidth. 
(ii) Cache Management Complexity: Maintaining 
validity of many cached copies is challenging [15]. 
(iii) Low Content Diversity: Redundant caching 
reduces diversity and leads to inefficient cache use 
[11] 

6 Leave Copy Down (LCD)  [25] 

M
ech

an
is

m
 

After a cache hit, the requested data is cached only on 
the downstream router (one hop closer to the 
consumer) rather than on every node along the path. 

P
aram

eters 

Metrics: 
Execution Time (Wall Clock Time), 
Memory Utilization (RAM) 
Topology: Binary Tree Netwotk Topology 
Simulator: Icarus 

A
d

v
an

tag
es 

(i) Minimum Redundancy: LCD avoids excessive 
duplication by placing a copy only at one hop 
downstream, making cache use more efficient.  
(ii) Lower Replacement Errors: Conservative caching 
reduces the rate of unnecessary replacements.  
(iii) Performance Evidence: LCD achieved up to 
59.15% reduction in RTT in experimental analysis. 

D
isad

v
an

tag
es 

(i) Slow Content Diffusion: Popular content requires 
multiple requests to propagate toward edge routers, 
delaying availability.  
(ii) Path Redundancy: While minimizing redundancy 
per node, it can still cause duplication along the 
consumer–producer path .  
(iii) Implementation Complexity: Requires careful 
tracking of requests and cache states, increasing 
overhead. 

7 Bernoulli random caching [23],[26],[27] 

M
ech

an
ism

 

Content is cached randomly at each node with a given 
traversal probability (p), meaning each node 
independently decides whether to store the content. 

P
aram

eters 

Metrics: 
CHR, Latency / Response Time, Bandwidth Savings, 
Cache Utilization, Computational Overhead, Fairness 
/ Adaptability 
Simulator: Icarus/own custom simulator based on c++ 

A
d

v
an

tag
es 

(i) Prevents caching rarely requested content, which 
can increase CHR compared to naïve "always cache.". 
(ii) Simple and lightweight — O(1) per decision (just 
generate a Bernoulli random variable). 
(iii) Works well as an admission policy combined 
with LRU/LFU for eviction, 
(iv) Load Distribution: Reduces server load by 
spreading content across multiple cache nodes, 
lowering repeated retrievals from the producer.  
(v) Adaptive Hit Ratio: Improves cache hit ratio by 
introducing a probabilistic storage approach that 
adapts to varying request patterns. 

D
isad

v
an

tag
es 

(i) Randomized behavior, 
Suboptimal Decisions: If probability (p) is not well-
calibrated, unpopular content may be cached 
unnecessarily.  
(ii) Lower Predictability: Randomness can cause 
inconsistent caching performance compared to 
popularity-aware strategies. 
(iii) Not adaptive to changing content popularity 
(static probability).  
(iv) Lower hit ratio compared to smarter policies (like 
LFU, ARC, or ML-based strategies) if not tuned. 
(v) Parameter sensitivity : performance highly 
depends on choosing the right p. 

8 Random choice caching[25], [28] 

M
ech

an
ism

 

Caches the content item at only one randomly 
selected node. 

P
aram

eters 

Metrics: Energy Savings, Caching Benefit , Delivery 
Success Rate 
Topology: Random/uniform placement in a 2D area 
Simulator: Icarus 
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A
d

v
an

tag
es 

(i) Simple and easy to implement: Simple to 
implement and moderately less affected by node 
energy compared to LCD. Or we can say that 
Random Choice caching offers slightly better energy-
saving stability than LCD, but as both Pc and the 
number of users increase, its energy-saving effect 
approaches zero. 
(ii) Random choice caching has high caching benefit 
than LCD. 

D
isad

v
an

tag
es 

(i) Inconsistent performance; does not guarantee a 
high cache hit ratio since decisions are purely 
random. 
(ii) Random Choice caching suffers from poor 
energy-saving efficiency, as its effect drops to 
nearly zero when both Pc and the number of users 
increase. 

9 cache placement strategy based on energy 
consumption optimization (ESCPS)[28] 

M
ech

an
ism

 

It first calculating the energy consumption of 
content delivery from different nodes to the user, 
then formulating a reward function that balances 
delivery energy and cache-switching costs. Using 
optimal stopping theory, the algorithm selects the 
best cache node to maximize expected energy 
savings 

P
aram

eters 

Metrics:Energy savings,Caching benefit,Delivery 
success rate 
Topology:simplified, abstract model 
simulator: MATLAB 

A
d

v
an

tag
es 

(i) Achieves the highest energy savings across all 
scenarios (users, content size, node distribution). 
(ii) Considers user perspective when selecting cache 
nodes, leading to better placement decisions. 
(iii) Energy savings increase almost linearly with 
content size due to optimized income function. 
(iv) Stable performance even when node replacement 
cost (Pc) is high or number of users increases. 
(v) Provides the best caching benefit (energy saved 
per unit content) incomparision to LCD and Random. 
(vi) Strong adaptability to dynamic network 
environments and hotspot traffic. 
(vii) High delivery success rate: probability of finding 
optimal cache placement remains high even with 
increasing node range 

D
isad

v
an

tag
es 

(i) Higher computational complexity compared to 
Random or LCD. 
(ii) Requires calculating reward/income functions for 
optimization. 
(iii) More difficult to implement in large-scale or real-
time systems due to overhead. 
(iv) May need additional resources (processing and 
storage) to maintain efficiency. 
(v) Delivery success rate slightly decreases as Pc 
increases (extra energy cost per observation). 

10 Centrality-based caching/ Centrality-Measures Based 
Algorithm[25], [29] M

ech
an

ism
 

Data contents are cached only once along the path, 
based on the value of betweenness centrality. 

P
aram

eters 

Metrics: 
Server Hit Reduction Ratio, 
Hop Reduction Ratio, 
Topology: 
random network topology, 
BRITE network topology using 500 nodes 
Simulator: 
ndnSIM [29] A

d
v

an
tag

es 

(i) CMBA outperforms Random, UC, and 
Betweenness because it intelligently selects cache 
routers using multiple centrality measures and cache 
capacity, while Random causes more cache misses, 
and UC/Betweenness often tie due to equal centrality 
values. 
(ii) CMBA maintains high performance in terms of 
Hop Reduction Ratio (HRR) and Server Hit 
Reduction Ratio (SHRR) compared to Random, UC, 
and Betweenness schemes. 
(iii) Suitable for highly dynamic networks, making it 
well aligned with NDN. D

isad
v

an
tag

es 

(i) Complex, as it requires estimating or learning the 
node betweenness centrality value, which is 
challenging. In another word we say that 
 Computational Complexity – Requires calculating 
multiple centrality measures (degree, closeness, 
reachability, betweenness), which is computationally 
expensive for large dynamic networks. 
(ii) Overhead in Dynamic Topologies – In dynamic 
scenarios, centrality values need to be recomputed 
frequently, adding processing and communication 
overhead. 
 

11 Hash-routing [20] [30] 
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M
ech

an
is

m
 

Uses a hash function to map the content identifier to a 
specific caching node, and forwards the request to 
that node. 

P
aram

eters 

Metrics: 
CacheHitRatio, Content popularity skewness, 
Average Link Load, 
Topology: GEANT, GARR, WIDE, Tiscali 
Simulator:Icarus2 

A
d

v
an

tag
es 

(i) Off-path hash-routing schemes consistently 
outperform on-path caching strategies, achieving 
better utilization of distributed caches.  
(ii) Among off-path approaches, symmetric hash-
routing achieves the highest hit ratio across all values 
of Zipf α, 
(iii) Robust Across Cache Sizes. 
(iv) Eliminates data cache redundancy. 
(v) Hash routing mechanism increase the cache hit by 
31 % in comparison to on-path caching. 

D
isad

v
an

tag
es 

(i) Increased Link Load – Many off-path HR schemes 
(e.g., symmetric HR, HR multicast, HR hybrid SM) 
cause significant additional link traffic compared to 
on-path caching. 
(ii) Potential Latency Overhead – Because content 
may be cached at an off-path node, retrieval can 
require detours, increasing response time compared to 
simple on-path caching. 
(iii) Topology Sensitivity – Effectiveness depends on 
network topology (e.g., GEANT vs. BRITE), so 
performance gains are not uniform across all 
networks. 
(iv) Diminishing Advantage with Large Caches – As 
the cache-to-population ratio increases, the 
performance gap between on-path and off-path 
caching (including HR) shrinks significantly. 
Uneven Traffic Distribution 
(v) HR Asymmetric can suffer from imbalanced 
traffic, since some cache nodes may see limited 
traffic, reducing their usefulness and lowering overall 
cache efficiency. 

12 
Probabilistic cache/ProbeCache [25][10] 

M
ech

an
ism

 

This modern strategy caches content based on both 
the availability of cache capacity at each node and its 
proximity to the consumer. Nodes closer to 
consumers have a higher probability of caching the 
content, thereby optimizing cache utilization and 
reducing redundancy. 

P
aram

eters 

Metrics: Server Hits,Hop  Reduction 
Topology: 6-level binary tree topology, 
heterogeneous cache deployments, scale-free 
topologies 
Simulator: custom-built simulator 

A
d

v
an

tag
es 

(i) Optimized Utilization: Balances cache capacity 
and demand, leading to efficient resource use.  
(ii) Reduced Server Hits & Hop Count: Improves hop 
reduction ratio and decreases reliance on producers.  
(iii) Adaptability: Works effectively in both 
homogeneous and heterogeneous cache size 
environments. 
(iv) Efficient Cache Resource Utilization. 
(v) Lower Cache Evictions. 
(vi) Scales to Heterogeneous Caches. 

D
isad

v
an

tag
es 

(i) Implementation Complexity: Requires careful 
calibration to avoid uneven cache distribution.  
(ii) Dependency on Parameters: Relies on Time 
Since Inception (TSI) and Time Since Birth (TSB) 
values, which may increase overhead and 
complexity. 
(iii)Hop reduction improvement is relatively small 
compared to CE2 and LCD. 
(iv)Topology Dependency. 
Sensitivity to Cache Size and Content Popularity. 
(v) Not Always Optimal in Core Caching. 

13 
Mobility aware data caching (MAEDC)[31], [32] 

M
ech

an
ism

 

Focuses on optimizing energy consumption while 
considering end-to-end delay in caching decisions. 
It aims to achieve near-optimal cache allocation 
performance across different network topologies. 

P
aram

eters 

Metrics: 
Energy Consumption, 
Caching Hardware Technology,The Mean Hop 
Count 
Topology: 
TREE Topology, 
NSF Topology, 
EON Topology 
Simulator: MATLAB 
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A
d

v
an

tag
es 

(i) Optimizes energy consumption and considers end-
to-end delay, achieving near-optimal cache allocation 
performance. 
(ii) Reduces energy consumption by 19.65% (without 
delay) and 12.92% (with delay) compared to other 
strategies. 
(iii) Reduces mean hop-counts by 4.46% (without 
delay) and 0.96% (with delay), supporting delay-
aware caching. 
(iv) Achieves near-optimal performance close to ILP 
solution (minor energy increase 7.16–11.42% 
(v) Popularity-aware caching using Zipf-distributed 
content requests. 
(vi) Supports distributed and parallel processing for 
faster convergence. 
Considers multiple energy components in CCN 
(interest packet transmission, security overhead). 

D
isad

v
an

tag
es 

(i) The emphasis on energy efficiency may lead to 
trade-offs in cache hit ratio or content availability 
under certain conditions. 
(ii) Performance sensitive to caching hardware; high-
power hardware like TCAM increases energy 
drastically. 
(iii) Computationally intensive due to ILP 
formulation and heuristic optimization, especially for 
large networks. 
(iv) Assumes single content provider; may not 
generalize well to multi-source networks. 
(v) Needs accurate knowledge of content popularity 
and network metrics for effective caching. 
(vi) Maximum acceptable delays are predefined; less 
adaptable to highly dynamic delay requirements. 
(vii) Energy-delay trade-off: strategies like CEE 
achieve minimal delay but at higher energy cost. 

14 
Randomly Copy One (RCO) [31][33] 

M
ech

an
is

m
 

Caches content randomly at one of the routers along 
the forwarding path between consumer and producer, 
instead of every node. 

P
aram

eters 

Metrics: 
Coverage 
Relative Delay 
Latency Analysis, 
Relative Number of Replacement 
Topology:Power-law topology 
Simulator: Built own custom event-driven simulator 

A
d

v
an

tag
es 

(i) Reduced Redundancy: Compared to LCE, RCO 
minimizes duplication, leading to more efficient 
cache resource utilization.  
(ii) Balanced Availability: While not as aggressive as 
LCE, RCO still ensures that cached copies are 
distributed along the path, providing reasonable 
availability. 
(iii) Reduces redundancy (iv) fewer replacements 
(v) better latency under cache saturation 
(vi) efficient resource use (<1% nodes needed for 
near-optimal performance). 

D
isad

v
an

tag
es 
(i) Suboptimal Placement Risk: Random selection can 
result in caching at less effective nodes, potentially 
increasing retrieval latency.  
(ii) Unpredictable Performance: The lack of 
deterministic placement may reduce performance 
consistency compared to popularity- or policy-based 
strategies. 
(iii) Higher latency at early stages. 
(iv) Randomness may place cache sub-optimally; 
lower hit probability in some cases 
(v) depends on popularity and cache size. 

15 Cache Capacity Aware Cache (CCAC)[9], [31] 

M
ech

an
ism

 

Cache capacity-aware caching is a strategy that 
optimizes the use of available cache space in a 
network by considering the capacity of the cache 
when making decisions about what content to store. 
It work on three stages to find the value of threshold 
i.e. CCVth value which represent threshold value by 
this value we can decide whether the content is high 
popular or low popular 

P
aram

eters 

Metrics: 
Content Diversity, 
CHR, Content Redundancy, Stretch Ratio 
Topology: Linear Path Topology 
Simulator: SocialCCNSim [9] 

A
d

v
an

tag
es 

(i) Less stretch ratio i.e. less distance between 
consumer and cached data. 
(ii) It has higher diversity ratio than HPC. 
(iii) CCAC has high cache hit ratio than WAVE. 
(iv) CCAC has low Stretch Ratio than WAVE, 
MAGIC 

D
isad

v
an

tag
es 

(i) No recognition for low popular content, Highly 
redundancy i.e. CCAC has high content redundancy 
than WAVE, MPC, DFGPC, MAGIC and CPCCS. 
(ii) High memory consumption 
(iii) Less diversity ratio. 
(iv) CCAC has high Stretch Ratio than HPC,DFGPC 
and CPCCS 
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16 Content Caching Strategy for NDN with Skip 
(CCndnS)[34] 

M
ech

an
ism

 

Breaks cache dependencies by distributing file 
segments along the subscriber–producer path. Each 
cache independently handles its own queries, 
reducing unnecessary cache checks and latency. 
 

P
aram

eters 

 
Metrics: 
network hit probability, 
Router hit Probability (edge router), 
Average hop distance, 
CS hit probability for an edge router, 
Edge Router Cache Size, 
CS Miss Probability, 
Skip Error Probability 
Topology: Abilene topology 
Simulator: purpose-built simulator 

A
d

v
an

tag
es 

(i) It has higher Router hit Probability when s=3 or 5. 
 
(ii) Network probability  
quickly exceeds when CS size increases. 
(iii) For specific zipf (α=2.5) distribution the average 
hop distance is minimum. 
(iv) It specify that Targets specific routers likely to 
hold a chunk, reducing router miss probability 
(v) Balances traffic between edge and core routers, 
avoiding edge-dominated caching 
(vi) Reduces memory latency and postpones router 
saturation 
(vii) Eliminates the filtering effect so that core caches 
remain effective even when edge caches grow 
(viii) Reduces redundancy without requiring extra 
coordination or control messages 
(ix) Provides a simple and accurate analytical model 
for predicting hit ratios and hop count 
(x) Allows use of advanced eviction policies like 
SLRU to reduce cache pollution 

D
isad

v
an

tag
es 

(i) Overall network hit probability remains unaffected 
despite reduced router misses 
(ii) Skip errors can occur when Interests bypass 
caches that actually hold the data 
(iii) Requires careful tuning of parameters such as 
segment count (S) and hop bound (H); larger S 
reduces skip errors but increases hop distance 
(iv) More complex than default en-route caching 
(v) Cannot fully eliminate redundancy, which is 
partly determined by routing 
(vi) Performance depends on correct parameter 
estimation and may require dynamic adjustment 

17 
 pre-caching strategy based on the relevance of 
requested content (PCSRC)[35] 

M
ech

an
is

m
 Adopts a sliding window mechanism, using a router 
ID list in the Interest packet and LACC in the Data 
packet. After caching the content, it assigns a sojourn 
time. 

P
aram

eters 

Metrics: 
CHR, 
Average Request Hop (ARH), 
Server Traffic Ratio (STR), 
Average Request Delay (ARD) 
Topology: 
31 routing nodes 
• Clients at leaf nodes only 
• 10,000 contents, each divided into 10 chunks (10 
MB each) 
• Cache capacity: 1000 MB per node 
Simulator: ndnSIM 

A
d

v
an

tag
es 

 (i) Higher Cache Hit Ratio (CHR) than CEE and 
ProbCache 
(ii) Lower Average Request Hop (ARH) 
Reduced Server Traffic Ratio (STR) 
(iii) Lower Average Request Delay (ARD) 
(iv) Adaptive to request popularity using weight 
parameter γ 

D
isad

v
an

tag
e

s (i) Performance sensitive to parameter tuning (γ, α). 
Higher cache management complexity. 
(ii) Requires sufficient cache space for pre-caching 
(iii) Assumes sufficient available bandwidth; results 
were demonstrated only on limited network 
topologies. 

18 TOPSIS(Technique for Order Preference by 
Similarity to Ideal Solution) and EW(Entropy 
Weighting)-based caching.[36] 
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M
ech

an
is

m
 Combines the Entropy Weighting (EW) method, 

which assigns weights to each index based on 
information uncertainty, with TOPSIS, a widely used 
comprehensive evaluation method. 
 

P
aram

eters 

Metrics: 
CHR, Latency, 
Link Load 
Topology: 
Tiscali-3257 topology 
Simulator: Icarus 

A
d

v
an

tag
es 

(i) CHR increases with cache capacity (S). 
(ii) Improves cache hit rate by considering content 
popularity at each node. 
(iii) Reduces average response hops, improving 
network efficiency. 
(iv) TOPSIS is highly flexible, as it imposes no strict 
restrictions on data distribution, sample size, or the 
number of indexes. The combination of EW and 
TOPSIS enables effective resource utilization and 
optimal node selection. 
(v) Reduces average latency compared to CBCP, LCD, 
CL4M, LCE, and ProbCache. 
Higher cache capacity (S) reduces latency as more 
content objects are cached. 
(vi) Lower latency is maintained across varying Zipf 
parameter α, adapting to content popularity 
(vii) Reduces average link load compared to LCD, 
LCE, CL4M, and ProbCache, while remaining 
comparable to CBCP. 

D
isad

v
an

tag
es 

(i) Involves significant computational overhead and 
added complexity in implementation. 
(ii) Requires additional computational overhead to 
track per-node content popularity. 
(iii) Increases memory usage compared to simpler 
caching schemes. 
Performance depends on Zipf distribution; low α 
reduces benefits. 
(iv) Higher complexity than simple schemes like LCE 
or ProbCache, affecting scalability. 
Requires computation of HOP index for cache node 
selection, adding processing overhead. 
(v) CHR Performance improvement depends on cache 
size; smaller caches reduce benefits. 
(vi) Latency performance gain is smaller when Zipf 
parameter α is low, as content popularity is more 
uniform. 
(vii) Link load is slightly higher than CBCP in some 
scenarios due to lack of consideration of global content 
popularity. 
(viii) Link load performance is not optimal when cache 
capacity is increased from 0.1 to 0.25. 

19 
Content Caching Strategy for NDN with Skip 
(CCndnS)[34] 

M
ech

an
is

m
 Breaks cache dependencies by distributing file 

segments along the subscriber–producer path. Each 
cache independently handles its own queries, 
reducing unnecessary cache checks and latency. 
 

P
aram

eters 

Metrics: 
network hit probability,Router hit Probability (edge 
router), Average hop distance,CS hit probability for an 
edge router,Edge Router Cache Size, 
CS Miss Probability,Skip Error Probability 
Topology:Abilene topology 
Simulator: purpose-built simulator 
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A
d

v
an

tag
es 

(i) It has higher Router hit Probability when s=3 or 5. 
(ii) Network probability  
quickly exceeds when CS size increases. 
(iii) For specific zipf (α=2.5) distribution the average 
hop distance is minimum. 
(iv) It specify that Targets specific routers likely to 
hold a chunk, reducing router miss probability 
(v) Balances traffic between edge and core routers, 
avoiding edge-dominated caching 
(vi) Reduces memory latency and postpones router 
saturation 
(vii) Eliminates the filtering effect so that core caches 
remain effective even when edge caches grow 
(viii) Reduces redundancy without requiring extra 
coordination or control messages 
(ix) Provides a simple and accurate analytical model 
for predicting hit ratios and hop count 
(x) Allows use of advanced eviction policies like 
SLRU to reduce cache pollution 

D
isad

v
an

tag
es 

(i) Overall network hit probability remains unaffected 
despite reduced router misses 
(ii) Skip errors can occur when Interests bypass caches 
that actually hold the data 
(iii) Requires careful tuning of parameters such as 
segment count (S) and hop bound (H); larger S reduces 
skip errors but increases hop distance 
(iv) More complex than default en-route caching 
(v) Cannot fully eliminate redundancy, which is partly 
determined by routing 
(vi) Performance depends on correct parameter 
estimation and may require dynamic adjustment 

B. 
Static Cache Replacement 

20) 
RR(Random Replacement)[25], [37] 

M
ech

an
is

m
 

Randomly selects a cached content for eviction when 
the cache is full.  
 

P
aram

eters 

Metrics: 
Execution Time (Wall Clock Time), 
Memory Utilization (RAM), Server Load , Round-
Trip Hop Distance,  Cache Hit Rate, Instantaneous 
Behavior  
Topology: Binary Tree Netwotk Topology 
simulator:Icarus [25] 

A
d

v
an

tag
es 

Always + RR Advantages: 
 
(i) Balanced content distribution across network 
(ii) Low server load in many cases 
(iii) Simple implementation (random replacement) 
(iv) Fast convergence to stable state 

A
d

v
an

tag
e

s 

Prob(p) + RR Advantages: 
(i) Similar to Always+RR (no negative impact) 
(ii) Fast convergence & simple 
(iii) Stable steady state 

D
isad

v
an

ta

g
es 

Always + RR Disadvantages: 
(i) Hit rate generally lower than LFU 
(ii) Performs worse than Prob(p)+LRU in some 
scenarios 
(iii) Randomness may evict useful content 

D
isad

v
an

tag
e

s
 

Prob(p) + RR Disadvantages: 
(i) No real benefit from probabilistic insertion (results 
nearly identical to Always+RR) 
(ii) Still weaker hit rate than LFU or Prob(p)+LRU 

21) Least Recently Used (LRU)[25], [37] 
 

M
ech

an
ism

 

Evicts the least recently accessed content from the 
cache. 

P
aram

eters 

Metrics:  
Execution Time (Wall Clock Time), 
Memory Utilization (RAM) 
Topology: Binary Tree Netwotk Topology 
Simulator: ndnSIM[37] 

A
d

v
an

tag
es 

Simple LRU Advantages: 
(i) Simple and easy to implement. 
(ii) Adaptive to recent requests, good for dynamic 
workloads. 

Always + LRU Advantages: 
(i) Fast initial response (caches everything 
immediately) 
(ii) Simple to implement 
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Prob(p) + LRU Advantages 
(i) Reduces duplicates 
(ii) better server load reduction 
(iii) Higher cache hit rate across node levels 
(iv) Better round-trip hop distance than Always+LRU 
(v) Lower memory waste 

D
isad

v
an

tag
es 

 
Simple LRU Disadvantages:  
 
(i) LRU Suffers from performance degradation when 
cache overflows (blind replacement). 
(ii) Does not consider content popularity. 
(iii) may retain less relevant content in dynamic 
environments. 
(iv) can evict items that later regain popularity, 
leading to suboptimal cache performance. 
(v) It may produce higher miss rates compared to 
policies like LRFU, especially under high request 
loads. 
(vi) Results in higher stretch ratio than ARC 
performance degrades under the Independent 
Reference Model (IRM). 
 

D
isad

v
an

tag
es 

 
Always + LRU Disadvantages: 
(i) High server load due to redundant replicas 
(ii) Poor cache hit rate beyond first-hop routers 
(iii) Worst round-trip hop distance in cascading 
topology 
(iv) Converges fast but to a low-performance steady 
state 

D
isad

v
an

ta

g
es 

Prob(p) + LRU Disadvantages 
 
(i) Slower convergence  
(long initial warm-up) 
(ii) Sensitive to p value (too small p delays caching) 

22) Least Frequently Used (LFU)[25], [37] 
 

M
ech

an
is

m
 

Evicts the least frequently item from memory 

 

P
aram

eters 
Metrics: 
Execution Time (Wall Clock Time), 
Memory Utilization (RAM) 
 
Topology: Binary Tree Netwotk Topology 
Simulator: Icarus/ ndnSIM 
 

A
d

v
an

tag
es 

 
Simple LFU Advantages:  
 
(i) LFU has high wall clock time w.r.t. content 
Catalogue size. 
(ii) Simple and easy to implement effective for stable 
and predictable access patterns. 
(iii) retains frequently accessed items, ensuring 
popular content remains available. 
(iv) minimizes cache misses for popular items; 
resource-efficient since it does not require extensive 
recency tracking, resulting in lower overhead 
(v) performs optimally under IRM compared to LRU. 
 

A
d

v
an

tag
es 

Always + LFU 

(i) Best cache hit rate overall 
(ii) Strong server load reduction 
(iii) Shorter round-trip hop distance 
(iv) Stable steady state performance 

https://www.gyanvihar.org/researchjournals/ctm_journals.php
mailto:sushil.23183963@mygyanvihar.com


     

 

       Available online at   https://www.gyanvihar.org/researchjournals/ctm_journals.php 
       SGVU International Journal of Convergence of Technology and Management 
                                                                                                            E-ISSN: 2455-7528 
                                                                                            Vol.12 Issue 1 Page No 65-94 

 

Correspondence to: Sushil Kumar Bagi, Suresh Gyan Vihar University, Jaipur            
Corresponding author. E-mail addresses: sushil.23183963@mygyanvihar.com 
82 | P a g e  

A
d

v
an

tag
es 

Prob(p) + LFU 
(i) Can reduce unnecessary caching under stable 
patterns 

D
isad

v
an

tag
es 

Simple LFU Disadvantages:  
(i) Struggles to adapt to changing content popularity. 
(ii) prone to cache pollution when historically popular 
but currently irrelevant items occupy space. 
(iii) relatively complex to implement. 
(iv) exhibits a higher stretch ratio than ARC; 
computationally expensive. 
(v) unsuitable for large caches due to increased 
complexity with cache size. 
(vi) LFU policy incurs O(n) replacement cost, leading 
to performance degradation at large cache sizes 
compared to LRU, FIFO, and RAND. 

D
isad

v
an

tag
es 

Always + LFU 

(i) Computationally expensive (O(n) updates) 
(ii) Susceptible to stale content pollution if access 
patterns shift 

D
isad

v
an

tag
es 

Prob(p) + LFU 
(i) Higher server load than Always+ LFU 
(ii) Cache polluted by stale content with high past 
frequency 
(iii)Poor hit rate compared to Always+ LFU 
(iv) Converges to a weak steady state, worse with 
small p 

23) 
FIFO (First in First Out)[25] 

M
ech

an
ism

 

Evicts the oldest data item in memory, meaning that 
the item loaded first is replaced by new incoming 
data. 

P
aram

eters 

Metrics: 
Execution Time (Wall Clock Time), 
Memory Utilization (RAM) 
Topology: Binary Tree Netwotk Topology 
Simulator: Icarus 

A
d

v
an

tag
es 

(i) Simple to implement, with low computational 
overhead. 
(ii)  provides predictable behavior by always 
removing the oldest item. 
(iii) efficient for streaming data where older items are 
less likely to be reused. 
(iv) requires no tracking of access frequency or 
recency. 
(v) Memory utilization does not vary much across 
policies (NULL ≈ LRU ≈ FIFO ≈ RAND). 

D
isad

v
an

tag
es 

(i) Does not consider content popularity, so frequently 
accessed items may be evicted prematurely. 
(ii) performs poorly in non-sequential or irregular 
access patterns. 
(iii) lacks of adaptability to changing popularity 
trends. 
(iv) prone to thrashing when the working set exceeds 
cache size. 
(v) results in the highest stretch ratio among common 
policies. 

24 
Least Recently Frequently Used (LRFU) [38] 

M
ech

an
is

m
 Uses Combined Recency Frequency (CRF) values to 

prioritize cached items, considering both how often 
and how recently they were accessed. LRFU merges 
the principles of LFU and LRU. 
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P
aram

eters 

Metrics: 
Hit Rate, 
Miss Rate 
Topology: No specific multi-node layout, links, or 
paths are modeled—the emphasis is on cache 
behavior per node. 
Simulator: 
Custom C++ implementation using GCC compiler 
(no standard simulator like ndnSIM was used) 
 

A
d

v
an

tag
es 

(i) Makes more informed decisions by balancing 
recency and frequency, improving cache 
performance.  
(ii) Produces a lower miss rate compared to LRU, 
especially as the number of generated interests 
increases.  
(iii) Performs better with larger cache sizes, making it 
suitable for systems with high storage capacity.  
(iv)  Dynamically adapts to changing access patterns 
through CRF values.  
(v) Enhances user satisfaction by retaining relevant 
content and reducing retrieval latency. 

D
isad

v
an

tag
es 

(i) More complex to implement compared to LRU or 
LFU due to CRF maintenance.  
(ii) Continuous CRF updates introduce computational 
overhead, especially in high-frequency access 
environments.  
(iii) May still underperform in bursty or highly 
unpredictable access patterns.  
(iv) Can evict still-relevant content if it is not recently 
accessed.  
(v) Requires higher memory usage (maintains both 
heap list and linked list), which may be problematic 
in resource-constrained systems. 

C. 
Dynamic Cache Replacement Techniques 

25) 
Popularity-based Network Coding (PopNetCod) [39] 

M
ech

an
ism

 

In this method Each router measures the local 
popularity of content objects dynamically by 
analysing incoming requests. The replacement of data 
from content store is based on the popularity 
information collected. 

P
aram

eters 

Metrics: 
Cache-hit rate, 
Client Goodput, 
Video Quality Distribution, 
Source Load Reduction 
Topology: Layered Topology  
of 1 source ,123 clients and  45 routers 
Simulator: Custom NetCodNDN-based simulator 
(event-driven) 

A
d

v
an

tag
es 

(i) Higher cache-hit rate than LCE+LRU 
(ii) Increased goodput at clients 
(iii) More high-quality video segments delivered 
(1080p) 
(iv) Reduced source load (~10% less vs LCE+LRU) 
(v) Better cache utilization by storing popular content 
at the edge. 
(vi) Improve user experience. 

D
isad

v
an

tag
es 

 
(i) More complex (popularity estimation + network 
coding) 
(ii) Limited cache size (0.9%–2.3% of source data) 
(iii) Dependent on adaptation logic (dash.js) 
(iv) Higher initial delay vs LCE+NoLimit 
(v) Implementation harder than simple LRU/LCE 
Potential problem of cache pollution. 
 

26) Content Popularity Based Caching(CPBC)[40] 

M
ech

an
is

m
 

CPBC operates by maintaining a data structure that 
tracks the popularity of content within a cache. 

P
aram

eters 

Metrics: 
cache hit ratio (CHR), Average number of hops 
Topology: 
Barabasi-Albert (BA) model network 

A
d

v
an

tag
es 

(i) High cache hit ratio due to popularity-aware 
content assignment. (ii)Reduced average number of 
hops → faster content delivery. 
(iii) Load balancing across management nodes. 
(iv) Efficient utilization of network resources and 
management nodes. 
(v)Reduced latency. 
(vi) Efficient bandwidth usage. 
(vii) Adaptability. 

https://www.gyanvihar.org/researchjournals/ctm_journals.php
mailto:sushil.23183963@mygyanvihar.com


     

 

       Available online at   https://www.gyanvihar.org/researchjournals/ctm_journals.php 
       SGVU International Journal of Convergence of Technology and Management 
                                                                                                            E-ISSN: 2455-7528 
                                                                                            Vol.12 Issue 1 Page No 65-94 

 

Correspondence to: Sushil Kumar Bagi, Suresh Gyan Vihar University, Jaipur            
Corresponding author. E-mail addresses: sushil.23183963@mygyanvihar.com 
84 | P a g e  

D
isad

v
an

tag
es 

(i) CPBC may lead to resource underutilization if the 
popularity of cached content changes rapidly. 
(ii) Performance Under Fluctuating Demand. 
(iii) Requires knowledge of content popularity in 
advance. 
 (iv) ILP(Integer Linear Programming) optimization 
can be computationally expensive for large networks. 
(v) Does not account for propagation delay, 
processing time, or bandwidth limitations. 
(vi) Performance may degrade if popularity 
distribution changes dynamically. 

27 Bloom-filter-based request node collaboration 
caching(BRCC)[41] 

M
ech

an
ism

 

BRCC dynamically adjust data deployment based on 
request frequency and proximity to subscriber. 

P
aram

eters 

Metrics: 
cache hit ratio 
(CHR), 
first hop hit ratio(FHHR), 
average route hop (ARH), average request delay 
(ARD) 
Topology: 
NDN Network Topology 
Simulator:  
MATLAB + C++ integrated simulator 

A
d

v
an

tag
es 

(i) Higher CHR & FHHR than LCE, ProbCache, 
WAVE 
(ii) Caches near subscribers to reduce delay 
(iii) Collaborative push of evicted data toward core 
(iv) Reduces redundancy and improves diversity 
(v) Efficient storage space utilization 
(vi) Lower ARH and ARD across varying cache sizes 

D
isad

v
an

tag
es 

(i)  Higher computational complexity (Bloom filter + 
collaborative decision logic) 
(ii) Performance depends on accurate popularity & 
request patterns 
(iii) Overhead in maintaining cache collaboration 
(iv) May be less efficient under sudden shifts in 
content demand 

2
8 Adaptive Replacement Cache (ARC)[42] 

M
ech

an
ism

 

ARC took advantages of two known caching 
strategies LRU and LFU. It manages the Cache 
entries based on both recency and frequency. 

P
aram

eters 

Metrics: 
Cache Hit Count ,  Cache Miss Count,  Cache Hit 
Ratio 
Topology: (3x3),(4x4), 
(5x5) 
Grid Topology 
Simulator: ndnSIM 

A
d

v
an

tag
es 

 (i) Achieves higher hit rate than LRU (up to 4–5% 
improvement). 
(ii) Requires smaller Content Store size to achieve the 
same hit rate as LRU (e.g., 60 vs 100). 
(iii) Adapts effectively between recently used and 
frequently used content. 
(iv) No manual tuning parameters required. 
(v) Better cache utilization and storage efficiency. 

D
isad

v
an

tag
es 

(i) Performance gain decreases as interest rate 
increases; converges with LRU at high rates. 
 (ii) Slightly more complex than LRU due to dual-list 
management (T1 and T2). 
 Hit rate decreases as grid size increases. 
(iii) Slightly higher computational overhead 
compared to LRU. 

29 EEC(Energy Efficient in Caching) [43] 

M
ech

an
is

m
 

EEC employs an energy efficient cache placement 
(EECP) strategy that determines caching decisions 
based on energy consumption. It optimize the energy 
efficiency of content caching and transmission. 
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P
aram

eters 

Metrics: 
Cache hit rate (CHR), Average response hops (ARH), 
Energy saving rate      (ESR) 
Topology: 
Physical Network Topology 
Simulator: 
ndnSIM 

A
d

v
an

tag
es 

(i) Highest cache hit rate (up to 75.4% for α=1)  
(ii) Lowest average response hops (5.04 for α=1)  
(iii) Highest energy saving rate (64.3% for α=1)  
(iv) Effectively uses neighbor cache space  
(v) Adapts caching based on content popularity and 
node centrality  
(vii) Reduces latency and network energy 
consumption 

D
isad

v
an

tag
es 

(i) Performance depends on cache size, content 
number, and α  
(ii) More complex cache management due to 
neighbor cooperation  
(iii) Requires accurate estimation of content 
popularity  
(iv)  Limited improvement if cache space is 
insufficient 

30 Name Popularity Algorithm (NPA)[44] 

M
ech

an
ism

 

NPU operates by maintaining a history of content 
popularity, allowing it to make informed decisions 
about which items to keep in the cache. 

P
aram

eters 

Metrics: 
CHR, No. of Hops, 
End-to-End Delay 
Topology: 
Telstra Topology, 
AT&T Topology, 
Tiscali Topology 
Simulator:ndnSIM 
 

A
d

v
an

tag
es 

(i) Maintains content popularity info via History 
Table (HT), even after content is evicted. 
Outperforms LRU, LFU, LFUDA, RANDOM across 
all real topologies. 
(ii) ~10–19% higher cache hit ratio. 
(iii) Lower hop count (up to 3.5% reduction). 
(iv) Lower end-to-end delay (up to ~13.8% 
reduction). 
(v) Reduces congestion & retransmissions by 
lowering hops and increasing hits. 
(vi) Performs best at Zipf α = 0.7, widely considered 
realistic. 
 
Higher cache hit ratio, 
Adaptability, 
 

D
isad

v
an

tag
es 

 
(i) Extra memory overhead due to History Table. 
(ii) Performance depends on proper HT size tuning 
(3% of CS size found best). 
(iii) Does not handle time-varying popularity (risk of 
cache pollution). 
(iv) Tested only with one producer – scalability with 
multiple producers not evaluated. 
(v) Results based on synthetic Zipf traffic, not real 
traces. 
 

31 Content Popularity ranking (CPR)[45] 

M
ech

an
ism

 

CPR assigns a ranking to content based on how 
frequently it is requested. Only content that exceeds a 
certain popularity threshold gets cached. When cache 
space is full the least content is evicted first. 
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P
aram

eters 

Metrics: 
Average Content Delivery Time 
Topology: Testbed architecture 
i.e. Real-world ICN-based testbed with 5 
geographically distributed servers (3 remote + 2 
cloud) and 10 client devices connected via 
Ethernet/Wi-Fi/4G across two cellular base stations; 
topology configurable and scalable 
Simulator: they built a real-world ICN testbed 

A
d

v
an

tag
es 

(i) Popularity-Aware Caching – Considers request 
frequency, file type, and content age to rank 
popularity, ensuring that frequently used and relevant 
content stays in cache. 
(ii) Efficient Cache Utilization – Prevents duplication 
across all servers by storing popular content closer to 
clients, improving overall cache hit ratio and reducing 
redundancy. 
(iii) Reduced Content Delivery Time – By caching 
popular content near consumers, response time is 
minimized compared to basic CCN and the current 
Internet. 
(iv) Mobility Support – Works with the developed 
mobility function to ensure seamless content delivery 
even when clients move between base stations. 
(v) Real-World Validation – Unlike many simulation-
based studies, CPR was implemented and tested on a 
real ICN testbed, demonstrating practical feasibility. 
(vi) Dynamic Adaptation – PopularityThreshold 
allows caching decisions to adjust automatically to 
changing content popularity. 

D
isad

v
an

tag
es 

(i) Limited Testbed Scale – Evaluated on only 5 
servers and 10 clients; scalability to larger networks 
was not studied. 
(ii) Incomplete Formalization – Algorithm details 
were described conceptually, with promise of full 
proposal in future work; mathematical modeling is 
missing. 
(iii) Focus on Single Metric – Primarily optimized for 
content delivery time, while other key caching 
metrics (e.g., bandwidth savings, server hit reduction 
ratio) were not fully analyzed. 
(iv) Producer Scalability Not Addressed – Paper 
mentions scalability issues with multiple producers as 
a limitation for future work. 
(v) Overhead of Popularity Calculation – Continuous 
tracking of request counts, file types, and publication 
times may introduce computational overhead in large-
scale deployments. 
(vi) Mobility Dependency – Performance benefits 
partly depend on the additional mobility support 
function, making it less isolated as a pure caching 
strategy. 

32 MultiCache[46] 

M
ech

an
ism

 

It is an overlay network architecture designed to 
enhance control for network operators by utilizing a 
distributed caching scheme. It aims to improve traffic 
localization and resource utilization, addressing 
inefficiencies in the current Internet architecture. The 
study also explores the feasibility of deploying this 
functionality within existing networks. 

P
aram

eters 

Metrics: 
cache hit ratio (CHR) and intra-domain cache hit ratio 
(CHR-Intra) 
Topology: 
Generated using GT-ITM (Georgia Tech Internet 
Topology Model) 
Simulator: OMNeT++ and OverSim Framework 
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A
d

v
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tag
es 

(i) Achieves very high cache hit ratio (up to 98.5%) 
(ii) Reduces overlay multicast traffic through traffic 
localization. 
(iii) Overlay-aware eviction prevents premature 
removal of active data. 
(iv) No extra control signaling overhead for cache 
discovery. 
(v) Supports flexible replacement policies (LRU, 
MRU, MFU). 
(vi) Effective performance with only 25–50% 
deployment density 

D
isad

v
an

tag
es 

(i) Requires additional OAR infrastructure, increasing 
cost and complexity. 
(ii) Cache replacement policies (LRU, MRU, MFU) 
show similar performance, no clear superior one, 
(iii) MFU chosen mainly for simplicity, not better 
performance. 
(iv) Fragment-level caching adds management 
complexity. 
(v) High localizability factor may overload caches 
and increase eviction. 
(vi) Dense deployments reduce request aggregation 
and local cache hit rates 

33 
The QoS-aware Cache Replacement (QCR) [47] 

M
ech

an
ism

 

QCR policy categorizes the cache store into multiple 
sub-cache stores based on different traffic. Each sub-
cache has a varying storage capacity tailored to the 
network's needs. The policy evaluates content using a 
popularity-density value, which balances the content's 
popularity with its size, ensuring that the most 
valuable content is retained while less valuable 
content is evicted. 

P
aram

eters 
Metrics: 
No. of cached data, 
No. of replacement operation, 
No. of Ignored Data, 
cache usage behavior across Class A, B, C (traffic 
categories) 
Topology : 
Multi-hop Vehicular Network Topology 
simulator: 
Intel Core 5 Duo CPU 

A
d

v
an

tag
es 

(i) Popularity & Size-Aware means it uses 
popularity-density value (σc = popularity/size) → 
ensures that only useful and popular content is 
cached. 
(ii)  When the popularity-density value increases, 
QCR is working exponentially. 
 
(iii) It considers the data packet’s QoS. 
(iv) It considers data chunk’s popularity. 
(v) Consider the size of data packet. 

D
isad

v
an

tag
es 

(i) High implementation complexity, 
Adding extra bits like c-tag and p-tag to data 
chunks and cache store table. 
(ii) Splitting cache into sub-caches may lead to 
under-utilization if one class is under-loaded while 
another is overloaded. 
(iii) Caching happens during content forwarding 
using PIT info, not immediately. 
(iv) QCR ignores Some Useful Data. 

34 Dynamic fine-grained popularity-based cache 
replacement (FGPC) & Dynamic Fine-Grained 
Popularity-based Caching 
(DFGPC)[48] 

T
y

p
es 

Dynamic  
Cache Replacement 
[FGPC = static threshold, less adaptive 
 & 
DFGPC= dynamic threshold, fully adaptive] 

M
ech

an
ism

 

 It maintains a popularity table that records the 
content name, access count, and timestamps to 
assess the popularity of each content item. This 
allows the system to make informed caching 
decisions based on real-time data about content 
usage patterns 

P
aram

eters 

Metrics: 
Cache Hit Ratio (Hitting Rate), 
Effect of Cache Size, 
Effect of Simulation Time, 
Impact of File Size (α factor) 
Topology: three-layer hierarchical Internet-like 
topology 
Simulator: 
OPNET Modeler 16.0 
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A
d

v
an

tag
es 

 
 FGPC Advantages: 
(i) High cache hit ratio. 
(ii) Low latency. 
(iii) Short stretch ratio. 
(iv) Efficient utilization of cache space. 
(v) Selectivity: Keeps only the most popular 
content when cache is full. 
(vi) Improved performance over MPC. 
(vii) Handles file size variations better; 
 
 

A
d

v
an

tag
e

s DFGPC Advantages: 
(i) Dynamic adaptability 
(ii) Consistently higher hit rate. 
(iii) Cache size independence’ 
File size resilience 

D
isad

v
an

tag
es 

FGPC Dis advantages:  
(i) High redundancy ratio 
(ii) High memory consumption 
(iii) High bandwidth, minimum diversity ratio. 
(iv) Threshold sensitivity; 
Temporary performance drops. 
(v) Not fully adaptive: Thresholds are fixed, so it 
cannot adjust dynamically to changing traffic 
patterns 

D
isad

v
an

tag
es 

DFGPC Disadvantages: 
(i) Complexity 
(ii) Overhead 

35 
Discard of Fast Retrievable Content (DFRC) [7] 

M
ech

an
is

m
 Uses FIB table information to calculate content 

retrieval time based on two parameters: Grade of 
Retrieval (GOR) and Stale Parameter (SP). 
Content with shorter retrieval time is assigned a 
higher discard priority. 

P
aram

eters 

Metrics: 
Average hit rate, 
Average round trip time, 
Redundancy of the data chunks 
Topology: 
WIDE (Japanese Internet backbone)., 
GARR (Italian university/research network), 

GEANT (European backbone) . 
Simulator:Icarus 

A
d

v
an

tag
es 

(i) Achieves the highest cache hit rate among all 
compared strategies (LRU, SRTT, OCRICN, 
EPPC). 
(ii) Dynamically adapts to content popularity 
changes over time using SP, discarding old popular 
content and storing new popular content. 
(iii) Reduces average RTT and improves user 
response time by prioritizing storage of content 
with longer retrieval times. 
(iv) Reduces redundant storage of data chunks 
compared to LRU and EPPC, leading to more 
efficient cache utilization. 
(v) Performs well across different network 
topologies (GEANT, GARR, WIDE) and varying 
cache sizes. 
(vi) Consistently outperforms strategies that 
assume fixed content popularity (OCRICN, 
SRTT). 
(vii) Improves network efficiency by reducing 
unnecessary duplication and balancing cache 
usage. 

D
isad

v
an

tag
es 

(i) Slightly higher redundancy than OCRICN due to 
the SP mechanism. 
(ii) Requires continuous monitoring and updating of 
content popularity, which may introduce 
computational overhead. 
(iii) Complexity is higher compared to simpler 
strategies like LRU. 
(iv) Performance depends on correct tuning of the SP 
parameter and reinforcement learning U parameter. 
(v) May require additional simulation or real-time 
computation for optimal parameter selection. 
(vi) Assumes Zipf-law content popularity; 
performance may vary with non-Zipf distributions. 
(vii) Implementation may be more complex due to 
reinforcement learning and dynamic content tracking. 
 

36 PFR (Popularity, Freshness, and Recency) based 
cache content eviction policy.[49] 

M
ech

an
ism

 

PFR evaluates each cached content based on 
Popularity (request frequency), Freshness 
(remaining lifetime), and Recency (last access 
time). It computes a combined EvictionValue and 
removes the content with the highest value when 
cache space is needed. This process is dynamic, 
continuously adapting to new requests and content 
aging, ensuring that the most essential and relevant 
data remains in the cache. 
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P
aram

eters 

Metrics: 
CHR, 
Server hit reduction ratio, Average response delay, 
Average energy consumption 
Topology: 
Randomly generated 
Simulator: 
ndnSIM 

A
d

v
an

tag
es 

(i) Retains highly popular, fresh, and recently used 
content, improving cache hit ratio. 
(ii) Reduces the number of requests reaching the 
IoT publisher, lowering server load. 
(iii) Lowers average response delay, providing 
faster data access to subscribers. 
(iv) Decreases average energy consumption due to 
fewer retransmissions. 
Adapts to dynamic content characteristics in NDN-
IoT networks. 

D
isad

v
an

tag
es 

(i) Requires calculation of multiple attributes 
(popularity, freshness, recency), adding 
computational overhead. 
(ii) Performance depends on proper weight 
selection for attributes; suboptimal weights can 
reduce efficiency. 
(iii) Slightly more complex to implement than 
simpler policies like FIFO or LRU. 
(iv) May evict less popular content even if it could 
be requested later, potentially leading to occasional 
misses. 
(v) Needs continuous monitoring of content 
attributes, which can be challenging in resource-
constrained IoT devices. 

37 AI/ML based caching[49], [50] 
 

M
ech

an
ism

 

AI/ML-based caching manages content selection, 
placement, and replacement by predicting content 
popularity and user demand. It uses historical data 
and real-time analytics to ensure that the most 
requested contents are available to users. many 
machine learning algorithm used in this case to 
optimize caching decision. Like  
DQL (Deep Q-Learning),DRL (Deep Reinforcement 
Learning),NMF (Non-negative Matrix Factorization),  
ANN (Artificial Neural Network),  Deep RNN 
(Recurrent Neural Network), RL (Reinforcement 
Learning), RNN (Recurrent Neural Network), SNN 
(Spiking Neural Network),CNN (Convolutional 
Neural Network), MLP (Multi-Layer Perceptron), 
ILP (Integer Linear Programming), Q-Learning, 
Hyper Deep Q-Networks (DQNs) 

P
aram

eters 

Metrics: Network scenario: 
ICN,NDN, Edge Computing etc. 
simulator : 
Any simulator can use for the performance 
analysis. like ndnSIM, 
Icarus, miniNDN, ccnSIM 

A
d

v
an

tag
es 

(i) Improved Prediction Accuracy: AI/ML 
algorithms analyze historical data to predict 
content popularity more accurately, leading to 
higher cache hit ratios, reduced latency, and 
enhanced user experience.  
(ii) Dynamic Adaptability: Can adapt in real time 
to changes in user behavior and network 
conditions, maintaining relevance of cached 
content.  
(iii) Enhanced Resource Utilization: Improves use 
of limited cache storage, reduces redundancy, and 
enhances overall network performance. 
(iv) Overcoming Traditional Limitations: 
Traditional caching techniques often cannot handle 
the dynamic nature of content popularity and 
network topology. ML/DL provides a way to 
analyze data, generate insights, and predict user 
needs, leading to more efficient caching systems  

D
isad

v
an

tag
es 

(i) Complexity and Overhead: AI/ML models 
introduce computational overhead for training and 
inference, requiring more resources, which may be 
infeasible in some environments.  
(ii) Data Dependency: Performance relies heavily 
on the availability of high-quality historical data. 
Poor or insufficient data can lead to inaccurate 
predictions and degraded caching performance. 
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38 
Max-Gain In Network Caching (MAGIC) [15]  

M
ech

an
ism

 

Functions as both a cache placement and cache 
replacement algorithm. It updates content 
popularity based on local cache gain and max-gain 
values, aiming to reduce bandwidth consumption. 

P
aram

eters 

Metrics : 
Bandwidth consumption, 
Server hit ratio, 
Caching operations. 
Topology: wireless network topology 
simulator: SocialCCNSim 

A
d

v
an

tag
es 

(i) Reduces bandwidth by 34.5%. 
(ii) Lowers server hit ratio by 17.91% . 
(iii) Reduces caching ops by 38.84%.[52] 
(iv) Provides high content diversity and achieves a 
high cache hit ratio under certain conditions. 
(v) Bandwidth efficiency. 
(vi)Popularity-aware caching. 
(vii) Fairer caching placement 

D
isad

v
an

tag
es 

(i) Overhead of Max-gain calculation. 
(ii) Extra fields in Interest/Data packets. 
(iii) Biased caching toward heavy-request 
consumers. 
Limited scalability. 
(iv) Replacement cost not fully optimized. 
(v) Requires more resources and incurs higher 
costs due to its complex mechanism. May increase 
retrieval times and lead to lower cache hit ratios 
compared to CPCCS. Also results in higher 
memory consumption. 

 

B. Insight from Comparative analysis 
As summarised table 1, the cache placement strategies 
such as LCE, LCD, Magic etc. do not leverage with the 
PIT or  FIB meta data which make reduction in the feature 
of  network dynamicity, where the static cache 
replacement techniques like FIFO, LRU, LFU, RR and 
LRFU do not take the decisions based on real time data, 
hence these algorithms are  static in nature which base on 
specific rule consecutively  lead to degrade the named data 
networking performance. In contrast, by making caching 
decisions based on PIT-FIB, it will become adaptive and 
dynamically respond to network conditions and improve 
overall performance. Also, in dynamic cache replacement 
strategies, mostly strategies based on probability and 
historical data, they did not take real-time network data for 
replacement. Apart from this, most of the machines 

learning algorithms are either model-based or based on 
static data-driven, so there is a gap regarding the use of 
model-free machine learning in NDN for adaptive, real-

time caching. 

VI. RESEARCH GAPS AND LIMITATIONS 

Based on our literature review, two key research gaps 
remain in named data networking (NDN). 
1. The absence of caching strategies that jointly use the 
PIT and FIB information for adaptive and real-time 
decisions. 
2. The limited use of model-free machine learning to 
enhance the performance of NDN cache replacement. 
Despite significant progress, many NDN caching 
strategies still face challenges related to content retrieval 
time, cache replacement policies. The integration of AI 
and machine learning offers promising opportunities to 
address these issues. We have gone through the various 
research papers from 2020 to 2025 related to caching and 
drew a pie chart and bar graph as fig. (6), fig. (7) based on 
two parameters, the research paper which was based on 
caching strategies with AI/ML technology vs. non-AI/ML, 
where Figure 6 clearly indicates that research in caching 
based on AI/ML is less than caching without any new 
technology of AI/ML and  Figure 7 shows the research gap 
regarding the lesser use of the PIT and FIB tables. 

 
Fig. 6.  NDN Research papers analysis from 2020 to 2025 
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Fig .7. Numbers of papers based on caching with PIT and FIB. 

VII.    CURRENT CHALLENGES AND EMERGING TRENDS 
 

Most existing caching strategies in Named Data Networking 
(NDN) rely primarily on historical content popularity rather 
than real-time request information obtained from the Pending 
Interest Table (PIT). Leveraging PIT data, such as the number 
of incoming faces, outgoing faces, request arrival rates, and 
content lifetime, along with relevant Forwarding Information 
Base (FIB) parameters, could significantly enhance caching 
decisions and overall network performance. However, without 
PIT-aware caching, redundant requests and suboptimal cache 
utilisation continue to limit efficiency, particularly in high-
traffic environments. Another challenge is the increasing 
content demand in large-scale NDN deployments, which puts 
pressure on cache capacity and retrieval latency. While 
advanced machine learning algorithms can potentially 
optimise caching policies, highly complex models may 
introduce scalability issues, high computational overhead, and 
long convergence times. To address these limitations, model-
free reinforcement learning approaches—such as Q-learning, 
multi-armed bandits, and deep reinforcement learning—are 
gaining attention in recent studies due to their ability to make 
adaptive caching decisions without the need for labelled 
datasets or extensive offline training. Integrating these 
approaches with PIT- and FIB-aware caching policies presents 
a promising research direction for improving adaptability, 
scalability, and efficiency in future NDN networks 

VIII. FUTURE DIRECTION 

 
 

There are various research areas where we can explore the 
solution to the problem in terms of caching-related issues. 
There are various caching attacks for e.g., time analysis, 
bogus announcements, cache pollution, and cache spoofing, in 
which we can work to maintain the integrity of caching [53]. 
The integration of on-path caching with emerging 
technologies such as IoT, edge computing, and 5G networks is 
also one of the major challenges. By caching content during 
transmission, this approach can enhance network efficiency, 
reduce latency, and improve overall scalability. With this 
understanding, there is a need to develop advanced caching 
strategies that incorporate intelligent criteria for content 
placement and efficient decision-making for content 
replacement. Applying machine learning techniques—
including Markov Decision Processes (MDP), Q-learning, and 
dynamic programming—represents a promising avenue. 
These machine learning algorithm is based on feedback from 
the environment, so if we apply them in the named data 
networking, then definitely performance will be increased, 
and also we know that routers maintain both tables i.e. PIT 
and FIB which is based on real time data if we use these data 
for cache replacement then the cache replacement will be 
based on current networking condition. So future research 
should focus on designing adaptive cache replacement, which 
should be based on both tables PIT and FIB because details 
like user behaviour and environmental changes, interest 
packet and data packet are the main part of  communication 
for sending requests and obtaining the reply in the NDN, 
and  all these details are maintained by the same. Leveraging 
these parameters can improve cache efficiency, reduce 
redundancy, and provide smarter, adaptive content distribution 
across the network. 

IX. CONCLUSION 
 

This research paper highlighted the importance of caching 
strategies in Named Data Networking (NDN) and their impact 
on network performance. This manuscript reviewed and 
categorized existing approaches into two major groups: cache 
placement and cache replacement, where the basic e.g. for 
cache placements and replacements are LCD, LCE and FIFO, 
LRU, LFU, and RR, respectively. While these foundational 
strategies are simple and widely used but they are static in 
nature and cannot adapt to dynamic network conditions, such 
as fluctuations in content popularity or variations in PIT in-
records and out-records. The advanced methods of caching, 
such as MAGIC, WAVE, and CPBC, achieve higher cache hit 
ratios and lower latency, but often introduce computational 
complexity. No single caching strategy is universally optimal; 
performance depends on network conditions, topology, and 
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workload. The paper also reveals that simulation 
methodologies in NDN caching research remain highly 
diverse in terms of metrics, network topologies, and simulator 
tools. It is noted that while algorithmic evaluations can be 
carried out on various simulators, ndnSIM remains the most 
reliable platform for actual performance measurement in 
NDN. Cache Hit Ratio (CHR) emerges as the most widely 
adopted evaluation metric, often complemented with measures 
such as latency, hop count, and bandwidth savings. However, 
advanced metrics like energy efficiency, fairness, and 
computational overhead are less frequently explored, limiting 
insights into caching performance under real-world 
constraints. Similarly, topology choices vary from simplified 
tree structures to realistic ISP-level graphs and IoT or 
vehicular scenarios, yet there is no standardized benchmark 
that enables fair cross-comparison. The contribution of this 
study lies in presenting a clear comparative analysis of cache 
placement and replacement strategies, identifying their 
strengths and weaknesses, and underscoring the research gap 
in exploiting PIT and FIB information for caching decisions. 
Furthermore, it emphasized the potential of machine learning 
to design intelligent caching strategies with the help of graph 
neural network and Apriori algorithm that adapt to dynamic 
network environments to enhance the caching decision at the 
same time also tells that too much use of machine learning in 
NDN caching leads to data dependency, complexity, memory 
consumption and communication overhead which will effect 
to slow down the performance under certain condition. This 
script also specifies that future work should focus on 
developing hybrid caching models that balance computational 
efficiency with adaptability, leveraging PIT/FIB data and 
lightweight ML techniques to achieve scalable and high-
performance caching in next-generation NDN architectures. 
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