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Abstract— Named Data Networking (NDN) has emerged as a promising architecture to improve the efficiency and scalability
of content retrieval by focusing on content names rather than host addresses. A core component of NDN is caching, which
enables frequently accessed contents to be stored closer to consumers, thereby reducing latency and bandwidth consumption.
This paper presents a comprehensive survey of caching strategies in NDN, covering both traditional approaches (e.g., FIFO,
LRU, LFU, RR) as well as advanced methods such as probabilistic, machine learning-based, and PIT/FIB-aware caching. The
strengths and limitations of each strategy are analysed, and their impact on performance metrics such as cache hit ratio, latency,
and resource utilization is discussed. Finally, the paper highlights open challenges and research directions to guide the

development of more intelligent and adaptive caching solutions in NDN.
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l. INTRODUCTION

The Named Data Networking (NDN) has developed as a
viable alternative to the traditional TCP/IP-based networking
paradigm by emphasising content dispatching rather than
host-to-host communication. Unlike conventional networks,
NDN integrates in-network caching, reducing data retrieval
latency and improving bandwidth utilization. Still, optimising
caching strategies remains a big challenge due to the dynamic
nature of data content popularity and the scalability demands
of modern usage. This survey examines recent studies on
caching strategies in NDN, providing a classification of

approaches and identifying research gaps to guide future work.

Several research papers have been published regarding
caching strategies in NDN. In the study [1], the authors
proposed a Graph Neural Network (GNN)-based caching
approach, which performed better than basic strategies such as
LFU and LSTM-ED in terms of cache hit ratio and latency
reduction. Similarly in the research paper [2] authors has
discussed the importance of NDN-based caching for indoor
positioning systems, showing how it reduces server load
compared to traditional architectures as well as the authors
found that after applying NDN-based indoor positioning and
navigation system with previous algorithm the improvements
achieved in the position of floor detection, localization and
navigation by 77%, 33% and 99 % respectively. In [3], the

authors introduced a social-aware caching method, where
selecting influential consumers in Online Social Networks

(OSNs) slightly improved cache hit ratios, thereby reducing
network traffic and operational cost in self-operated content
delivery networks. Although these advancements exist,
existing caching strategies are often based on static or
historical data to determine content popularity, limiting their
effectiveness in dynamic environments such as real-time
streaming platforms and social media. Moreover, many
researchers do not consider features from both the Pending
Interest Table (PIT) and Forwarding Information Base (FIB)
in cache decision-making, leading to suboptimal performance
in high-traffic networks. Additionally, most Al/ML-based
caching approaches rely on supervised learning, requiring
labelled datasets and large-scale training, which makes them
complex and impractical for real-time decision-making in
NDN, even though routers maintain local tables for
forwarding requests.

Despite the wide range of caching strategies proposed in
NDN. Although few studies have explored the cache
replacement technique based on Meta data of FIB table, the
research that combined both the pending interest table and
Forwarding Information Base remain scarce. This lack of PIT-
FIB aware design leads to suboptimal performance in named
data networking with highly dynamic and large scale
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environment. Therefore, the central problem addressed in this
study is the absence of an intelligent caching strategy that
jointly leverages PIT and FIB information to make adaptive,
real-time caching decisions. Besides the limited use of PIT-
FIB information in caching strategies there is a lack use of
model free machine learning to enhance the caching strategy.
The rest of this paper is organised as follows: Section 2
presents the research methodology used for selecting and
analysing relevant studies. Section 3 provides a system
overview. Section 4 reviews existing literature on caching in
NDN. Section 5 compares various caching strategies through
qualitative analysis. Section 6 discusses research gaps and
limitations. Section 7 highlights current challenges and
emerging trends. Section 8 outlines future research directions,
and Section 9 concludes the paper by summarising key
findings.

Il. RESEARCH METHODOLOGY

This review primarily focuses on research articles published
between 2020 and 2025, reflecting the most recent
developments in caching strategies for Named Data
Networking (NDN) under the broader Information-Centric
Networking (ICN) paradigm. Foundational works published
between 2010 and 2019 were also included to provide
historical context and to illustrate the evolution of caching
techniques. The search strategy involved querying multiple
digital libraries, including IEEE Xplore, SpringerLink,
ScienceDirect, ACM Digital Library, and Google Scholar.
Search keywords included combinations of: “Named Data
Networking”, “Information-Centric Networking”, “caching
strategies”, “content store”, “machine learning”,
“reinforcement learning”, “PIT”, and “FIB”. Boolean
operators (AND/OR) were used to refine search results, and
both title/abstract and full-text searches were performed.

A. Purpose and Scope:

The purpose of this review is to provide a broad overview
of caching strategies in Named Data Networking (NDN)
and their impact on network performance. The review
describes the evolution of cache placement and cache
replacement techniques, from basic static methods to
adaptive and machine learning—based approaches. Its
scope covers research works published between 2020 and
2025, while also referring to foundational studies (2010-
2019) to give historical context on on-path caching and
cache replacement strategies. The review highlights key
strategies, simulation tools, and evaluation metrics used in
the literature, offering new researchers a clear
understanding of developments in NDN caching.
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B. Inclusion Criteria:

a) Research published in peer-reviewed journals or
conferences.

b) Papers focusing on caching strategies within NDN or
ICN, including both Al/ML-based and non-Al
approaches.

c) Studies providing simulation-based, analytical, or
experimental performance evaluation.

d) Articles written in English.

C. Exclusion Criteria:

a) Works unrelated to NDN caching (e.g., general web
caching not within ICN context).

b) Articles without performance evaluation or technical
discussion.

c) Non-peer-reviewed content such as theses preprints
without peer review, blogs, or presentations.

The initial search yielded 120 articles. After removing
duplicates and applying the inclusion/exclusion criteria, 46
relevant research papers were selected for detailed analysis.
These were then categorized by publication year to identify
trends and assess the progression of NDN caching research.

I11. System OVERVIEW

A. Comparison between NDN and Traditional IP Networks

This NDN architecture provides more efficient data fetch
and reduces the reliance on traditional IP-based routing
methods; ultimately it improves overall network performance
and user experience in terms of delay and throughput
[4].Current network is based on TCP/IP protocol suit where
network works on end to end connectivity of devises and It
starts from application layer to physical layer and vice versa to
deliver data through the concept of transmission, logical
addressing, forwarding etc. the main objective is that the
routers use in the traditional network is not for data caching, it
use only for to provide the best route to data packets. So
processing of all steps in IP network is time taking and if any
data lost during transmission then the data must be
retransmitted from original source where NDN is based on the
concept of content centric whatever the rule and regulation
needed are surrounded towards data. The tradition network
and NDN could be distinguish with many parameters like
DNS, Message types, packet formation, logical addressing,
types of connection etc. [5].
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B. Working of NDN

The main architecture of Named Data Networking is based
on the concept of content-centric networking, where data is
retrieved based on its content name rather than its location. As
in Fig. 1, we can easily see that every node in the NDN just
responds to the request if the node is not fulfilling the request,
it will forward the request. Whenever the consumer requests
to network the nearest router will respond if it has the contents
otherwise it will send it to the next router to obtain the content
If the next router also has no content, then send it to next node,
this process will continue until it reaches to producer. At last
producer will send the content to the same path from which
the interest packet came. It has five components.

1. PIT (Pending Interest Table

2. FIB (Forwarding Information Base)
3. CS (Content Store)

4. Consumer

5. Producer

These components work together to manage data requests,
cache content locally for faster access, and ensure that
interests are forwarded efficiently throughout the network.
Now to understand the background of NDN we can refer to
Fig. 2, where the consumer needs to access a specific piece of
content; it sends a request as an interest packet which contains
the name of the desired data into the network. The router
which has CS (content Store) checks whether the requested
content of consumer is available in the cache memory. If it is
found, the router retrieves the content from the CS and sends
it back to the consumer, significantly reducing latency. If the
content is not available in the cache, the interest packet is
forwarded through the FIB to locate the producer that holds
the requested data then router based on the interest writes the
pending interest in the PIT (Pending Interest Table), allowing
it to track which interests are still unresolved. This mechanism
ensures that once the data is retrieved from the producer, all
waiting consumers can receive the content simultaneously,
further optimising network efficiency and resource utilisation.
After maintaining the PIT, the router forwards the interest
based on FIB to the appropriate next hop, ensuring that the
request reaches its destination promptly. This process not only
enhances data retrieval speed but also minimises unnecessary
traffic across the network, contributing to a more streamlined
and responsive communication system also discussed [6].
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Fig. 2. Caching procedure [7], [8]

C. NDN Communication Workflow Using PIT, FIB, and
Caching

The NDN communication is based on maintaining two
tables i.e. PIT and FIB, the detailed mechanism which is
explained in Fig (3) and Fig. (4) Where it shows how NDN
initially works before and after caching. Figure 3 shows how
to request first time from the consumer to the producer. When
first time a consumer wants any data, it firstly generates an
interest packet and sends it to the nearest router to process the
request. In figure it is shown that there are two consumers 1
and 2 who want to access data content c1 and c2 respectively
which are produced by producers 1 and 2. Consumer first and
consumer second generate the interest 1 and interest 2
messages respectively both consumers send the request to the
nearest router R1. There are totally three routers between the
consumer and producer i.e. R1, R2 and R3. At router R1 when
request packets i.e. Interest 1 and Interest 2 reach router R1,
R1 checks its content store if requested data packets are
available then it provides them to the consumer. In Figure (3)
the content store is empty then router R1 sends to the next
node after updating the PIT i.e. pending interest table where
routerl checks whether any earlier request for the same is in
pending in PIT if not then it writes the request in the PIT.
Here R1 wrote interest 1 and interest 2 in PIT. And according
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to the routing information of FIB, router 1 will forward the
request to the next node. In FIB of R1, it is mentioned that for
interest 1 and interest 2, they go to router 2 and the same
course of action router 2 has done. When the request will
reach router 3 it sends the appropriate producer for the
fulfilment of interestl and interest2. In fig. (4) Which shows
how data packets of content cl1 and c2 are delivered to
consumerl and consumer?2 respectively. When content c1 and
c2 found in producer 1 and producer 2 they send it to the same
return path of interest. It is sent to first router R3 and R3
stores the content c1 and c2 in its content store and then it
deletes the previous pending request from its own PIT table
accordingly and updates the FIB for the content cl and
c2.Then it sent the contents to the next router R2 from which
the interest received previously continuously repeat the same
action at the router R2 i.e. copy the content in its own content
store and delete the pending request from PIT table and update
FIB table. In this way, the content c1 and c2 are delivered to
the consumer 1 and consumer 2. Now the content is cached at
the routers R1, R2 and R3.If the same data request is
generated by consumers then it will be fulfilled by router
R1.By this procedure we can achieve fast delivery of data
packets for the same request. So we can say that caching is the
way by which we store the contents of routers between the
consumer and producer.

FIBR1

Next

Name | Eorward

FIB R2 FIB R3

Interest 1 R2

Interest 1 R3 Interest 1 P1

Interest 2 R2

Interest 2 R3 Interest 2 P2

PITR1 PITR2 PITR3

Interest 1 Interest 1

Interest 1| Interest 2

Interest 1

Interest 2 Interest 2

Consumer 1

Producer 2
Consumer 2

Consumer to producer

Fig. 3. Consumer to producer [9]
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IVV.CONCLUSIONS

There are various caching strategies which store the data
between the consumer and producer. The caching is
divided into two parts: cache placement and cache
replacement. This paper provides an overview,
classification, and research directions, offering a
comprehensive literature survey focusing on caching
strategies within Named Data Networking (NDN).
Caching is generally categorized as on-path caching and
off-path caching. Various caching strategies have been
developed for NDN, emphasising the shift from traditional
IP-based networking to a content-centric approach. In-
network caching stores data at intermediate nodes rather
than just at the endpoints, improving cache hit rates and
minimising retrieval hops. Similarly, content replication
enhances data availability by distributing multiple copies
across caching nodes, reducing network traffic and
improving overall performance. However, the majority of
approaches rely on concepts such as node popularity,
content popularity, content priority, content diversity,
routing, producer mobility, energy consumption,
information sharing, learning-based caching, indexing-
based caching, and some on the integration of CS and PIT.
There are many caching algorithm has been developed and
simulated using ndnSIM [8], [10].

A. Recent Research Trends

The review paper [11] surveys caching strategies in
Named Data Networking (NDN) from 2015 to 2021 and
offers a structured map of the literature by publication
venue, application domain, modern strategy families, and
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simulation environments. It contrasts foundational
replacement baselines—FIFO, LFU, and LRU—with
popularity-aware and learning-based methods, and
distinguishes cache placement from replacement, which is
helpful for clarifying the decision points in the content
lifecycle. On the placement side, the paper summarizes
algorithms such as BEACON (betweenness-aware
popularity estimation), DLCPP and SAE (deep models for
popularity prediction), CPC (cache capacity control),
Bloom-filter—based designs, green caching/routing, EHCP
(energy-aware hybrid placement), and MAED (Markov
approximation for energy—delay trade-offs). The review
also notes the emergence of Q-learning and other ML
techniques, along with compound popularity models,
signalling a shift toward adaptively. Crucially, the paper
also touches on cache replacement and enumerates a range
of strategies beyond the classical baselines. These include:
ANFIS-based replacement (leveraging a false-locality
parameter to counter locality-disruption attacks), Universal
Caching (UC) (reported to outperform traditional policies
across scenarios), Deep Cache (deep learning—based
popularity prediction for eviction), LSTM encoder—
decoder approaches (time-series modelling of content
popularity), Atomic Caching (replacement guided by
overlapping name prefixes), On-the-Fly Caching
(restricting storage to cache-specific prefixes), BEP
(Betweenness and Edge Popularity) (node-centric
popularity for eviction), VNDN-oriented policies
(frequency-driven replacement for vehicular settings),
LFF—Least Fresh First (freshness-centric eviction for
10T), and FDC—Freshness-Driven Caching for vehicular
NDN (incorporating content lifetime). By grouping these
techniques, the review helps readers see the design space
ranging from topology-aware to freshness- and ML-driven
policies. That said, the analysis in [5] remains primarily
descriptive. It does not provide discrete, metric-based
comparisons across a standard testbed or common traces.
In particular, it does not evaluate strategies using core
NDN metrics such as cache hit ratio, latency, content
diversity, hop count, content stretch, link load, content
redundancy, inter-domain traffic, energy consumption, or
server load. Nor does it present side-by-side benchmarking
under identical topologies or workloads, which would
enable statistically grounded conclusions about efficiency,
scalability, or robustness to popularity shifts. Additionally,
integration with PIT/FIB-aware signals in the replacement
decision—an area with growing interest—receives limited
empirical treatment. Implication and research gap. While
this research paper is valuable as a landscape survey and
taxonomy, its lack of quantitative, head-to-head evaluation

limits prescriptive guidance for practitioners. This gap
motivates the present work: a systematic, metrics-driven
comparison of classical (FIFO, LFU, LRU) and advanced
replacements (ANFIS, UC, Deep Cache, LSTM-based,
Atomic, On-the-Fly, BEP, VNDN-specific, LFF, FDC),
ideally under controlled topologies (e.g., 2 consumers, 2
producers, 5 routers) and dynamic workloads, with
reporting on the full metric suite listed above. Extending
this with PIT/FIB-aware decision signals and model-free
RL (e.g., Q-learning) would further test adaptivity to non-
stationary popularity, providing the empirical evidence
missing from the current review.The study in [11] where
authors have proposed new system model which maintains
two tables IST and IRT and they discusses a cache
placement technique based on compound popularity,
which combines both content popularity and node
popularity. In this approach, content is divided into global
popularity and local popularity. By considering both
content popularity and node popularity, the caching
strategy can make more informed decisions about where to
store content. Authors have also discussed modern caching
strategies in NDN such as cache capacity-aware CCN,
spanning tree heuristic and distributed algorithms,
distributed and reconfigurable DL based on SDN, green
caching, routing-efficient hybrid content placement, node
popularity, content popularity, active edge caching
algorithms, etc. In the paper [12] authors proposed the
CAL i.e. Cache Aging with Learning method for loT
network which is eight step processes to manage and
process data freshness with using specific formula. It uses
prediction mechanism which is based on Nonlinear
Autoregressive (NAR) neural network so that it can
increase the cache hit ratio. This neural network model is
based on past traffic pattern and does not account for real
time network conditions. This limitation reduces its
adaptability towards sudden changes in content popularity.
In the paper [13], authors proposed a machine learning
approach using Apriori algorithm to predicts and cache
frequently accessed data so that cache hit ratio will be
increased. Authors are used Apriori algorithm which is
supervised learning algorithm to find the association rules
and based on that it predicts the next requested data,
means it uses prior knowledge of frequent item sets. In this
paper authors shown the performance of recommended
machine learning algorithm with LRU and prove that
apriori based algorithm perform high cache hit ratio. Still
this algorithm was based on real time data sets of traffic
for analysis with single metrics i.e. cache hit rate. The
work does not leverage based on more performance
metrics like network traffic load, server hit rate with
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considering current data analysis i.e. real time NDN
specific information. In the paper [14] the authors
proposed an intelligent caching method for vehicular
networks using deep transfer learning. The approach
introduced a time-varying mechanism to predict content
popularity, supported by a customized hybrid neural
network model. The model was trained in three stages to
identify and replace less popular content with more
popular content in the cache. While the method
demonstrated its capability to improve content delivery by
predicting popularity trends, the evaluation was conducted
entirely in MATLAB rather than in a network simulation
environment such as ndnSIM. This limits the assessment
of the method’s performance under realistic NDN
conditions with real-time network dynamics.

The paper [15] introduces the CRPM (Cache Replacement
Policy based on Multi-factors) for NDN, which calculates
a "cache value" for each content item using a weighted
combination of parameters such as popularity, acquisition
cost, energy consumption, and freshness. Content with the
lowest value is evicted. The authors validated CRPM on a
simple linear topology, leaving a clear path for future
research. To fully assess CRPM's potential, researchers
should test it on diverse NDN topologies like fat-tree or
mesh. Furthermore, a more comprehensive evaluation is
needed using NDN-specific metrics like average interest
satisfaction latency, number of hops saved, and the
policy's impact on network congestion. This would
provide a more robust understanding of CRPM's
performance and applicability in real-world NDN
environments. For instance, paper [16] introduced a
probability-based eviction mechanism that considers
content popularity distribution. The scheme assigns each
item a probability of being retained or removed, balancing
storage between popular and less popular content.
Analytical models were developed to compute average
miss probabilities across multi-level cache networks. The
approach reduces redundancy compared to naive caching
but relies on accurate and relatively stable popularity
estimation. While theoretically sound, the lack of adaptive
mechanisms and real-world validation limits its scalability
in dynamic NDN environments. Where the paper [17] in
this paper authors proposed a Popularity and Gain Based
Caching Scheme (PGBCS) for ICNs that considers both
the popularity of content chunks and their caching gain to
guide caching decisions. The authors emphasised the
dynamic nature of content value, suggesting that
frequently requested data should be retained longer.
Simulation results showed improvements in cache hit ratio,
user access delay, and service quality compared to

conventional strategies. However, the approach still
requires validation in diverse real-world network settings.
The paper [18] proposed a model for video content
caching that prioritises items likely to be accessed again,
improving efficiency. Beyond single-metric policies,
multi-factor approaches incorporate additional parameters,
such as content size, request frequency, and user distance.
However, the approach mainly considers popularity and a
few network parameters, limiting its adaptability to highly
dynamic network conditions and diverse content types.
The study [9] provides an extensive review of caching
techniques in NDN. It first highlights the limitations of
traditional location-based Internet architectures, such as
network congestion and high latency, emphasising the
need for efficient caching mechanisms in NDN to improve
data retrieval. The study discusses various caching
techniques, particularly popularity-based caching, which
prioritises repeatedly requested data content to increase
cache hit ratios and maximise network performance. A
comparative analysis is conducted on multiple caching
strategies, including Compound Popular Content Caching
Strategy (CPCCS), Max-Gain In-network Caching
(MAGIC), and Hop-based Probabilistic Caching (HPC),
evaluating their efficiency in reducing content redundancy,
improving cache hit ratios, and alleviating network
congestion. Furthermore, the paper explores the role of
caching strategies in new technologies such as 10T, Fog
Computing, Edge Computing, and 5G networks,
emphasising their adaptability in dynamic environments.
This study gives a presentation on cache replacement
techniques that are used to replace the content from the
cache when there is no space in memory. The cache
replacement algorithm is classified into eight different
types of techniques. These are (i) static (ii) space security
(iii)content update (iv) centralised (v) Energy efficient (vi)
weighted (vii)adaptive (viii)Dynamic Popularity. Some of
the very well-known cache replacement static techniques
are RR, LRU, LFU, and FIFO. These techniques are
simple but not so effective. The study in [19] emphasises
dynamic content popularity-based caching, which caching
of popular content enhances the consumer retrieval rate in
NDN networks where popularity is based on request
cycles and the cache threshold is maintained according to
every node's cache. Popularity changes over time. There
are various proposed algorithms which has been developed
so far to enhance the popularity For example the paper [20]
proposed MPC, in which the node caches content whose
popularity has gone beyond the threshold value. In the
paper [21] proposed a cache method which was based on
content popularity and router level, in this approach those
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routers which are close to the consumer can cache high
popularity content. Accordingly, the authors proposed two
algorithms out of which one is for cache placement and
another for cache replacement. In cache placement, the
proposed policy is known as dynamic popularity cache-
placement (DPCP) which calculates the data content
popularity based on the number of content requests in the
current and past cycles. In cache replacement the proposed
policy is based on replacement value (RVCS), this value
will be calculated with the help of last popularity, request
time and transmission cost. Content will be replaced if and
only if the replacement value is low. The researchers in
[18] had applied Graph Neural Network (GNN) to node
level classification problem. They found that GNN is
efficient for node-level, edge-level and graph-level
prediction. In this study authors shown that there are
various techniques had been developed so far based on
content popularity by using neural network like deep
learning-based content popularity prediction (DLCPP) to
perform cache decisions in the SDN based ICN same as
stimulate neural network (SNN) is used to make caching
decision. The GNN-based cache replacement policy in
NDN was the first proposed method in NDN caching.
GNN is used to learn spatial dependency to collect the
traffic data. It demonstrates how a GNN-based caching
method can significantly reduce access latency by caching
popular information close to the consumer. But still, there
is some limitation in GNN like the statistical model used
to generate users' content preferences may rely on
assumptions that do not hold true in all contexts. If user
behaviour significantly deviates from these assumptions,
the effectiveness of the caching strategy could be
compromised; leading to lower cache hit ratios than
expected. There are so many assumptions that were made
during the research for example users' content preferences,
static user behaviour, network condition, cache space
limitation and user request history If any one of them
deviates then performance will go down.

V. QUALITATIVE COMPARATIVE ANALYSIS OF EXISTING
CACHING STRATEGIES

Caching in NDN is a pivotal mechanism that enhances
data retrieval efficiency by storing content at various
network nodes. This approach not only reduces latency but
also improves content availability, making it a promising
alternative to traditional IP-based networks. Several
innovative caching methodologies have been proposed to
optimise performance in NDN environments. Essentially,
there are two kinds of caching named is (i) On path
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caching and (ii) off-path caching as fig (5) shown. But
some data caching techniques comes under both categories
depending on its implementation. In this paper, we are
only concerned with on-path caching. In on-path caching
in Named Data Networking involves storing content at
routers along the data path from producer to consumer,
enhancing response times. However, it lacks the
cooperative advantages of neighbourhood caching
techniques, which improve performance through
collaboration among neighbouring routers in content
retrieval and caching decisions.

I Caching Techniques in NDN |

Off Path Caching

On Path Caching
Cache Placement I | Cache Replacement | eo-Based Caching
P Network-Aware
Static Dynamic Caching
replacement

Joint
|l > Optimization
Caching

|_,| Probabitity
Caching

Edge Caching

Popularity based

EEC
Fog & Edge
Caching

Adaptive caching
MPC
> | Macic DFRCE
AI/ML based
caching AI/ML based
caching

Fig. 5. Classification of caching

caching like CCAC]

A. Cache Placement and Replacement Strategies in NDN

Caching is a fundamental component of the Named Data
Networking (NDN) architecture, as it directly influences
how and where data is stored within the network to
enhance efficiency and reduce latency. Proper cache
placement ensures that frequently accessed content is
readily available, thereby minimizing redundant requests
to remote servers and improving overall network
performance. Cache replacement strategies further
determine which data should be retained or evicted from
the content store. As illustrated in Figure 5, static
replacement strategies rely on pre-computed decisions;
however, due to their inability to adapt to varying network
dynamics, their effectiveness is limited in highly dynamic
environments. Conversely, dynamic replacement strategies
are designed to adapt to changing traffic patterns and
content popularity, enabling more intelligent eviction
decisions and enhancing data retrieval efficiency. To
provide a comparative understanding, Table 1 summarizes
A. cache placement techniques, B. static replacement
policies, and C. dynamic replacement policies, along with

Block Chain Based
Caching
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their respective advantages and disadvantages. o | (i) Marginal Gains in Tree Topology for example
% | CL4M performs nearly as well as LCD, with CHR
Table 1. Cache Strategies S | values close to 36-37%, which narrows the relative
A Cache Placement S | improvement margin of the proposed scheme.
1. | Compound popularity based caching [11][22] & | (ii) Consistently achieves higher cache hit ratio than
z Based on compound popularity, which combines both & | other strategies under the same cache sizes.
@ | content popularity and node popularity (i) In terms of latency CL4M and LCD have nearly
= equal latency in tree topology, narrowing the
2. proposed scheme’s relative advantage.
3 (iv) Performance gap is smaller in tree topology
compared to Tiscali-3257.
— | Metrics: CHR, Latency, Link Load (v) All strategies benefit from larger cache sizes,
g Topology:Tiscali-3257, Tree topology reducing the relative improvement margin.
3 | simulator: Icarus » | (vi) Latency performance is nearly the same in both
= 2 | topologies under a. = 0.8, S = 0.15, limiting topology-
) g | specific insights.
+ | (i) A proposed technique outperforms the four base & | (vii) In tree topology, link load = 348.26 bytes, which
S | line caching strategies across both topologies and all @ | is slightly worse (0.06% higher) than LCD (346.32
£ | values of S. bytes). _ ) _ )
& | (ii) It achieves 41.2% CHR at S = 0.25 in Tiscali- (viii) Qverall improvement is marginal with small
& | 3257 topology, which is 5.1% higher than the second- cache sizes. _ i
best (LCD at 36.1%). 2 | Hop-Based Probabilistic Caching (HPC)[9], [10],
(iii) 1t provides 2.4% improvement over LCD when S [23]
=0.05. =z | Utilizes two key factors—CacheWeighty and
(iv) In tree topology, the proposed scheme achieves @ | CacheWeightMRT—to optimize caching.
an average CHR improvement of up to 3.1% = | CacheWeighty determines the probability of caching
compared to LCD and CL4M. = | content based on the number of hops, while
(v) In terms of latency the proposed technique 3 | CacheWeightMRT sets the caching duration using the
achieves the lowest latency in both Tiscali-3257 mean residence time (MRT) of the content. This
(64.65 ms) and tree topology (66.2 ms). probabilistic approach aims to reduce redundancy and
(vi) In Tiscali-3257, latency is 4.8% lower than LCD, manage caching along the consumer—producer path.
9.9% lower than CL4M, 13.1% lower than
ProbCache, and 12.1% lower than LCE.
(vii) In tree topology, latency is 3.3% lower than
0 0,
Iﬁﬁ)ﬁéaiﬁeéar:gvfgrzg/gallgwgrLt?]ZAn] L?:EA) lower  than z Content [_)iversity, CHR, Content Redundancy,
(viii) It effectively utilizes edge caching (LPC and | | Z ?”etclh R o Path Tono|
GPC), reducing consumer response time. & _opol ogy.. Inear tflt'l 0po Iogy 10
(ix) Proposed scheme effectively reduces link load simulator: custom-ouilt simu ator[10],
R Social CCNSim[9],[23]
when cache size is large. _ — _ .
3 | (i) Probability-based caching technique.
2 | (ii) achieves a low stretch ratio.
& | (iii) Provides a better cache hit ratio.
& | (iv) Performs better than many traditional caching
| strategies.
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g | (i) Does not prioritize less popular content. z Each node maintains a popularity table that tracks
g | (i) May lead to high redundancy. @ | content names, popularity counts, and a threshold
S | (iii) Increased memory consumption = | value. When the popularity count meets the threshold,
& | (iv) Low content diversity. 2. | the content is labeled as popular, prompting the router
;g to recommend caching it to neighboring routers.
& o | Metrics :
3) | WAVE Popularity-based caching strategy % _(riHR,I Stretch, Ratio of Cached Elements, Diversity
opology:
[9]. [24] 2 - :
= | A popularity-based caching technique that distributes 3 ;irﬁ]ed{;g'rlzensc’rgﬁﬁfzAGESS;’kIﬂZ\%?k%mC’NLeS\ﬁi|at0r'
§ data chunks Iac_ross the network according to their developed in C++ over the Omnet++ framework[20]
= content popularity w | (i) Increases cache hit ratio by outperforming the
g' S | default strategy. It achieves >85% hit ratio.
S | (ii) Reduced Storage Overhead.
— - & | (iii) It ensures efficient resource utilization.
= ‘II\'/Ithfrfli? ';\é%rjgteioﬁw g;cuhrg’ L|'_|n||: Stézstisé InteCr;iFe’ & | (iv) reduces network traffic. performs better than
Y | ¢ t Caching Effici : Relati WAVE and CACC. (v) It improves overall network
3 | Replacement Count, Caching iciency, Relative resource consumption.
o] Hop Count and Number of Chunks. N Lower Diversitv: the MPC diversitv. 3%-18%
| Topology: GT-ITM—generated hierarchical topology 9 M hOI € h ersty, eo 0 erstly- 3% o
simulator: discrete event-driven simulator[24] 5&, much fower than CCN (.28 /9_35 ). .
(i) WAVE achieves the shortest average hop count, 2 (||)Iqtroduces communication ove_rhead because it
2 placing popular content closer to users and reducing 2 | requires Popula_rlty Table, _Popularlty Threshold, and
§ retrieval delay. L;,g; R__e_set Value tuning, increasing complexity.
& | (ii) It reduces cache diversity because it only consider @ égll()ectilzirformance heavily depends o threshold
2 - .
@ 22&&2%&12;&%2;?/\t/(;Al}gErgaches early (low-index) (iv) caching is biased toward nodes neighboring
(iii) It reduces link stress by distributing content pro%ucerls. e
across multiple C-routers. (v) Topology Sensitivity.
(iv) WAVE caches more popular files locally,
reducing inter-1SP traffic and lowering external server 5_| Leave Copy Every Where (LCE) [25]
dependence. z This is the simplest cache placement policy in Named
(v) Increasing file chunk count reduces unnecessary & | Data Networking (NDN), where a data packet is
caching overhead. = | cached at every node along the forwarding path
(vi) Reduces average cache management cost. (vii) It %' | between the consumer and the producer.
achieves a high cache hit ratio because each cached 3
chunk is reused 23.5 times on average, at least 16x Metrics:
higher than competing schemes. 9‘? Executibn Time (Wall Clock Time)
(viii) lowers delay, shortens stretch ratio, and 2 Memory Utilization (RAM) ‘
@D .
e ot vt ot (55| 2| Topolgy: By Tre Network Topoogy
g | () Popularity-blind  caching  which  achieves Imurator. Jcarus
g | extremely poor efficiency (0.09 times per cached
2 | chunk).
g | (ii) In-network caching like WAVE still requires at
& | least one inter-ISP fetch for new content.
& | (iii) It Consumes high memory and bandwidth, and
may result in a lower cache hit ratio under certain
conditions.
4 | Most Popular Cache(MPC)[9], [20]
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» | () High Availability: Ensures content is highly 7 | Bernoulli random caching [23],[26],[27]
2 | available since it is cached at all nodes along the path, - - -
% reducing |atency for popular content. < Content is CaChed -I’E-indom|y at eaCh rlode with a glVen
& | (ii) Reduced Traffic Load: By caching at multiple 8 | traversal probability (p), meaning each node
cached node, lowering traffic overhead [15]. o | Metrics:
(iii) Performance Evidence: LCE reduced RTT by § CHR, Latency / Response Time, Bandwidth Savings,
82% and outperformed LCD in comparative 3 Cache Utilization, Computational Overhead, Fairness
evaluations [26]. @ | / Adaptability
@ | Simulator: Icarus/own custom simulator based on c++
» | (i) Prevents caching rarely requested content, which
2 | can increase CHR compared to naive "always cache.".
§ (ii) Simple and lightweight — O(1) per decision (just
& | generate a Bernoulli random variable).
;U,- (i) Redundancy: Excessive duplication wastes cache & | (iii) Works well as an admission policy combined
£ | space and bandwidth. with LRU/LFU for eviction,
S | (i) Cache Management Complexity: Maintaining (iv) Load Distribution: Reduces server load by
5 validity of many cached copies is challenging [15]. spreading content across multiple cache nodes,
@ (iii) Low Content Diversity: Redundant caching lowering repeated retrievals from the producer.
reduces diversity and leads to inefficient cache use (v) Adaptive Hit Ratio: Improves cache hit ratio by
[11] introducing a probabilistic storage approach that
adapts to varying request patterns.
6 | Leave Copy Down (LCD) [25] o | (i) Randomized behavior,
= | After a cache hit, the requested data is cached only on 8 Suboptimal Decisions: If probability (p) is not well-
@ | the downstream router (one hop closer to the S calibrated, unpopular content may be cached
= | consumer) rather than on every node along the path. S | unnecessarily.
=3 & | (ii) Lower Predictability: Randomness can cause
< & | inconsistent caching performance compared to
o | Metrics: popularity-aware strategies.
g Execution Time (Wall Clock Time), (iii) Not adaptive to changing content popularity
2 | Memory Utilization (RAM) (static probability).
@ | Topology: Binary Tree Netwotk Topology (iv) Lower hit ratio compared to smarter policies (like
© | Simulator: Icarus LFU, ARC, or ML-based strategies) if not tuned.
» | (i) Minimum Redundancy: LCD avoids excessive (v) Parameter sensitivity : performance highly
2 | duplication by placing a copy only at one hop depends on choosing the right p.
& | downstream, making cache use more efficient. 8 | Random choice caching[25], [28]
& | (ii) Lower Replacement Errors: Conservative caching _
® | reduces the rate of unnecessary replacements. < | Caches the content item at only one randomly
(iii) Performance Evidence: LCD achieved up to :’:J selected node.
59.15% reduction in RTT in experimental analysis. 2.
g | (i) Slow Content Diffusion: Popular content requires 3
@ | multiple requests to propagate toward edge routers, - _ _ _ _ i
S | delaying availability. o | Metrics: Energy Savings, Caching Benefit , Delivery
& | (ii) Path Redundancy: While minimizing redundancy & | Success Rate . .
& | per node, it can still cause duplication along the & | Topology: Random/uniform placement in a 2D area
& | consumer—producer path . @ | Simulator: Icarus
(iii) Implementation Complexity: Requires careful
tracking of requests and cache states, increasing
overhead.
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2 | (i) Simple and easy to implement: Simple to g. (i) Higher computational complexity compared to
S | implement and moderately less affected by node 2 | Random or LCD.
§ energy compared to LCD. Or we can say that S | (ii) Requires calculating reward/income functions for
€ | Random Choice caching offers slightly better energy- § optimization.
“ | saving stability than LCD, but as both Pc and the S | (iii) More difficult to implement in large-scale or real-
number of users increase, its energy-saving effect “ | time systems due to overhead.
approaches zero. (iv) May need additional resources (processing and
(ii) Random choice caching has high caching benefit storage) to maintain efficiency.
than LCD. (v) Delivery success rate slightly decreases as Pc
o (i) Inconsistent performance; does not guarantee a increases (extra energy cost per observation).
@ | high cache hit ratio since decisions are purely 10 | Centrality-based caching/ Centrality-Measures Based
2 random. Algorithm[25], [29]
% (i) Random Choice caching suffers from poor § Data contents are cached only once along the path,
S energy-saving efficiency, as its effect drops to 9 | based on the value of betweenness centrality.
& nearly zero when both Pc and the number of users 5
increase. z
9| cache placement strategy based on energy
consumption optimization (ESCPS)[28] o | Metrics:
z It first cal_culating the_ energy consumption of § Server Hit Reduction Ratio,
@ content delivery from different nodes to the user, 3 | Hop Reduction Ratio,
3 | then formulating a reward function that balances & Topology:
= delivery energy and cache-switching costs. Using @ | random network topology,
3 optimal stopping theory, the algorithm selects the BRITE network topology using 500 nodes
best cache node to maximize expected energy Simulator:
savings ndnSIM [29]
- Metrics:Energy savings,Caching benefit,Delivery 2 | (i) CMBA outperforms Random, UC, and
S | success rate S | Betweenness because it intelligently selects cache
3 | Topology:simplified, abstract model Z | routers using multiple centrality measures and cache
@ | simulator: MATLAB S | capacity, while Random causes more cache misses,
< “ | and UC/Betweenness often tie due to equal centrality
. . . . values.
e ey ™| || ( G minin g performarce i e o
ﬁ (ii) Considers u’ser perspecti’ve when selecting 'cache Hop Reductlc_)n Ratio  (HRR) and _Server  Hit
& nodes, leading to better placement decisions Reduction Ratio (SHRR) compared to Random, UC,
& (i) Iéner . . Imost. i arl ith and Betweenness schemes.
rgy savings Incréase aimost linearly wi (iii) Suitable for highly dynamic networks, making it
content size due to optimized income function. . -
. well aligned with NDN.
(iv) Stable performance even when node replacement T [ () Complex, as it requires estimating or leamning the
cost (Pc) is high or number of users increases. g node t?etw;aenness | centralit va?ue whicr(iJ is
(v) Provides the best caching benefit (energy saved 3 challenaing. In another word WZ sa that'
per unit content) incomparision to LCD and Random. =] Com l?tat?dnal Complexity — Rey uires calculatin
(vi) Strong adaptability to dynamic network 3 m Itipl ntralit en yr dq " losen 9
environments and hotspot traffic. & u hpbe'l'tce b ? Yy measu eﬁ. h( Iegree, i?{?e efls,
(vii) High delivery success rate: probability of finding reachabrll ¥ Ie We%nness)_, whic Ili computationally
optimal cache placement remains high even with e_>_<penS|v$] O(; arge dynarnic netvvlor - d .
increasing node range (i) O\_/er ead in I_Dynamlc Topologies — In dynamic
scenarios, centrality values need to be recomputed
frequently, adding processing and communication
overhead.
11 | Hash-routing [20] [30]
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z Uses a hash function to map the content identifier to a o | Metrics: Server Hits,Hop Reduction
@ | specific caching node, and forwards the request to § Topology:  6-level binary  tree  topology,
3 | that node. 3 heterogeneous  cache  deployments, scale-free
2. g | topologies
— @ | Simulator: custom-built simulator
v Met'r1|cs. | y >
5 | CacheHitRatio, Content opularit skewness, . - A .
S | Average Link Load pop y 2 | (i) Optimized Utilization: Balances cache capacity
ge Link Load, S - -
2 Topology: GEANT, GARR, WIDE, Tiscali S | and demand, leading to efficient resource use.
3 | Simulator-lcarus? ' ' & | (ii) Reduced Server Hits & Hop Count: Improves hop
- - - - @ | reduction ratio and decreases reliance on producers.
» | (i) Off-path hash—routm_g schemes: con5|s_ten_tly o . .
2 | outperform on-path caching strategies, achieving ﬂ") Adaptability: q V\Lorks effectively t']n b‘?th
£ | better utilization of distributed caches. omogeneous — an eterogeneous - cache - size
& | (i) Among off-path approaches, symmetric hash- ((air\]/\;llrzof:‘]irgigttsbache Resource Utilization
& | routing achieves the highest hit ratio across all values h e '
of Zipf o, (v) Lower Cache Evictions.
(iii) Robust Across Cache Sizes. (vi) Scales to Heterogeneous Caches.
(iv) Eliminates data cache redundancy. - I - lexitv: - o
(v) Hash routing mechanism increase the cache hit by >} c(:gli:)rpagignmfg?\%oig uiz\r?e%ec):éz.e ;gﬁrlijéﬁoﬁare u
- - - w .
3-1% In comparison {0 on-path caching. g (ii) Dependency on Parameters: Relies on Time
g | () Increased Link Load — Many off-path HR schemes s ; . X . .
& | (e.g., symmetric HR, HR multicast, HR hybrid SM) =1 Since Inception (TSI) and Time Since Birth (TSB)
L 1 Ll m - -
9%’ cause significant additional link traffic compared to Q value?, .tWh'Ch may increase overhead and
2 | on-path caching. @ | complexity. . .
B | (i) Potential Latency Overhead — Because content (ili)Hop reduction improvement is relatively small
@ | may be cached at an off-path node, retrieval can c_om_lg_)are? to CDEZ ang LCD.
require detours, increasing response time compared to (iv) opology bependency. .
simple on-path caching. Sensitivity to Cache Size and Content Popularity.
(iii) Topology Sensitivity — Effectiveness depends on 13 (v) Not Always Optimal in Core Caching.
network topology (e.g., GEANT vs. BRITE), so Mobility aware data caching (MAEDC)[31], [32]
performance gains are not uniform across all
networks. z o ) _
(iv) Diminishing Advantage with Large Caches — As 2 Focuses on optimizing energy consumption while
the  cache-to-population  ratio increases, the = | considering end-to-end delay in caching decisions.
performance gap between on-path and off-path 2. | It aims to achieve near-optimal cache allocation
caching (including HR) shrinks significantly. 3 performance across different network topologies.
Uneven Traffic Distribution _
(v) HR Asymmetric can suffer from imbalanced o Metrics: )
traffic, since some cache nodes may see limited = | Energy Consumption,
traffic, reducing their usefulness and lowering overall 3 | Caching Hardware Technology,The Mean Hop
cache efficiency. @ | Count
121 probabilistic cache/ProbeCach “ | Topology:
Probabilistic cache/ProbeCache [25][10] TREE Topology,
i NSF Topology,
< | This modern strategy caches content based on both EON Topology
S | the availability of cache capacity at each node and its Simulator: MATLAB
S | proximity to the consumer. Nodes closer to
£ | consumers have a higher probability of caching the
content, thereby optimizing cache utilization and
reducing redundancy.
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» | (i) Optimizes energy consumption and considers end- » | (i) Reduced Redundancy: Compared to LCE, RCO
S | to-end delay, achieving near-optimal cache allocation 2 | minimizes duplication, leading to more efficient
& | performance. & | cache resource utilization.
& | (ii) Reduces energy consumption by 19.65% (without & | (ii) Balanced Availability: While not as aggressive as
@ | delay) and 12.92% (with delay) compared to other & | LCE, RCO still ensures that cached copies are
strategies. distributed along the path, providing reasonable
(iii) Reduces mean hop-counts by 4.46% (without availability.
delay) and 0.96% (with delay), supporting delay- (iii) Reduces redundancy (iv) fewer replacements
aware caching. (v) better latency under cache saturation
(iv) Achieves near-optimal performance close to ILP (vi) efficient resource use (<1% nodes needed for
solution (minor energy increase 7.16-11.42% near-optimal performance).
(v) Popularity-aware caching using Zipf-distributed o | (i) Suboptimal Placement Risk: Random selection can
content requests. g | result in caching at less effective nodes, potentially
(vi) Supports distributed and parallel processing for 2 | increasing retrieval latency.
faster convergence. S | (ii)) Unpredictable Performance: The lack of
Considers multiple energy components in CCN & | deterministic placement may reduce performance
(interest packet transmission, security overhead). & | consistency compared to popularity- or policy-based
g | (i) The emphasis on energy efficiency may lead to strategies.
g | trade-offs in cache hit ratio or content availability (iii) Higher latency at early stages.
2 | under certain conditions. (iv) Randomness may place cache sub-optimally;
g | (ii) Performance sensitive to caching hardware; high- lower hit probability in some cases
& | power hardware like TCAM increases energy (v) depends on popularity and cache size.
& | drastically. 15 | Cache Capacity Aware Cache (CCAC)[9], [31]
(iii) Computationally intensive due to ILP Cach e i - rat that
formulation and heuristic optimization, especially for g | -ache Ccapacity-awar€ caching 1S a strategy tha
@ | optimizes the use of available cache space in a
large networks. =3 wwork b iderina th v of th h
(iv) Assumes single content provider; may not g network Dby considering the capacity of the cache
; . =+ | when making decisions about what content to store.
generalize well to multi-source networks. 3 | It work on three stages to find the value of threshold
(v) Needs accurate knowledge of content popularity i.e. CCVth value wr?ich represent threshold value b
and network metrics for effective caching. thi§ value we can decide V\?hether the content is hi %/
(vi) Maximum acceptable delays are predefined; less opular or low oooular g
adaptable to highly dynamic delay requirements. popu’ - W popu
(vii) Energy-delay trade-off: strategies like CEE 5 ?:Ac?rg;:e%st.Diversity
= achieve minimal delay but at higher energy cost. % CHR, Content Redundancy, Stretch Ratio
Randomly Copy One (RCO) [31][33] @ | Topology: Linear Path Topology
@ | Simulator: Social CCNSim [9]
=z v | () Less stretch ratio i.e. less distance between
§ Caches content randomly at one of the routers along S | consumer and cached data.
8 '_[he forwarding path between consumer and producer, 2 | (ii) It has higher diversity ratio than HPC.
%' | instead of every node. & | (iii) CCAC has high cache hit ratio than WAVE.
i & | (iv) CCAC has low Stretch Ratio than WAVE,
v Metrics: MAGIC
5 | Coverage o | (i) No recognition for low popular content, Highly
2 | Relative Delay g | redundancy i.e. CCAC has high content redundancy
@ | Latency Analysis, 2 | than WAVE, MPC, DFGPC, MAGIC and CPCCS.
« Relative Number of Replacement % (||) H|gh memory Consumption
Topology:Power-law topology & | (iii) Less diversity ratio.
Simulator: Built own custom event-driven simulator @ | (iv) CCAC has high Stretch Ratio than HPC,DFGPC
and CPCCS

Correspondence to: Sushil Kumar Bagi, Suresh Gyan Vihar University, Jaipur
Corresponding author. E-mail addresses: sushil.23183963@mygyanvihar.com
77|Page



https://www.gyanvihar.org/researchjournals/ctm_journals.php
mailto:sushil.23183963@mygyanvihar.com

Available online at https://www.gyanvihar.org/researchjournals/ctm_journals.php
SGVU International Journal of Convergence of Technology and Management
E-ISSN: 2455-7528

Vol.12 Issue 1 Page No 65-94

16 | Content Caching Strategy for NDN with Skip o | (i) Overall network hit probability remains unaffected
(CCndnS)[34] % | despite reduced router misses
S | (i) Skip errors can occur when Interests bypass
§ Breaks cache dependencies by distributing file § caches that actually hold the data
S | segments along the subscriber—producer path. Each & | (iii) Requires careful tuning of parameters such as
& | cache independently handles its own queries, & | segment count (S) and hop bound (H); larger S
g' reducing unnecessary cache checks and latency. reduces skip errors but increases hop distance
(iv) More complex than default en-route caching
(v) Cannot fully eliminate redundancy, which is
9;? Metrics: partly determined by routing
% network hit probability, (v? Pt(_arform;mce depe_nds(,j on _cor(;(.actt par;ameter
& | Router hit Probability (edge router), = estimation and may require dynamic adjustmen
“ | Average hop distance, pre-caching strategy based on the relevance of
CS hit probability for an edge router, requested content (PCSRC)[35]
Edge Router Cache Size,
CS Miss Probability, < | Adopts a sliding window mechanism, using a router
Skip Error Probability S | ID list in the Interest packet and LACC in the Data
Topology: Abilene topology S, | packet. After caching the content, it assigns a sojourn
Simulator: purpose-built simulator 3 | time.
3 | (i) Ithas higher Router hit Probability when s=3 or 5. i
= o | Metrics:
£ | (ii) Network probability 5 | CHR,
& | quickly exceeds when CS size increases. 3 | Average Request Hop (ARH),
& | (iii) For specific zipf (0=2.5) distribution the average @ | Server Traffic Ratio (STR),
hop distance is minimum. @ | Average Request Delay (ARD)
(iv) It specify that Targets specific routers likely to Topology:
hold a chunk, reducing router miss probability 31 routing nodes
(v) Balances traffic between edge and core routers, * Clients at leaf nodes only
avoiding edge-dominated caching * 10,000 contents, each divided into 10 chunks (10
(vi) Reduces memory latency and postpones router MB each)
saturation + Cache capacity: 1000 MB per node
(vii) Eliminates the filtering effect so that core caches Simulator: ndnSIM
remain effective even when edge caches grow » | (i) Higher Cache Hit Ratio (CHR) than CEE and
(viii) Reduces redundancy without requiring extra 2 | ProbCache
coordination or control messages § (ii) Lower Average Request Hop (ARH)
(ix) Provides a simple and accurate analytical model & | Reduced Server Traffic Ratio (STR)
for predicting hit ratios and hop count @ | (iii) Lower Average Request Delay (ARD)
(xX) Allows use of advanced eviction policies like (iv) Adaptive to request popularity using weight
SLRU to reduce cache pollution parameter y
g | (i) Performance sensitive to parameter tuning (v, o).
&' | Higher cache management complexity.
2 | (ii) Requires sufficient cache space for pre-caching
S | (iii) Assumes sufficient available bandwidth; results
& | were demonstrated only on limited network
© | topologies.
18 TOPSIS(Technique for Order Preference by
Similarity to lIdeal Solution) and EW(Entropy
Weighting)-based caching.[36]
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Combines the Entropy Weighting (EW) method,

< - . X i
@ | which assigns weights to each index based on
& | information uncertainty, with TOPSIS, a widely used
2. | comprehensive evaluation method.
o
QD
=
3
o .
@ | Metrics:
“ | CHR, Latency,
Link Load
Topology:
Tiscali-3257 topology
Simulator: Icarus
>
Q.
<
S
Z
&

(i) CHR increases with cache capacity (S).

(i) Improves cache hit rate by considering content
popularity at each node.
(iii) Reduces average
network efficiency.

(iv) TOPSIS is highly flexible, as it imposes no strict
restrictions on data distribution, sample size, or the
number of indexes. The combination of EW and
TOPSIS enables effective resource utilization and
optimal node selection.

(v) Reduces average latency compared to CBCP, LCD,
CL4M, LCE, and ProbCache.

Higher cache capacity (S) reduces latency as more
content objects are cached.

(vi) Lower latency is maintained across varying Zipf
parameter o, adapting to content popularity

(vii) Reduces average link load compared to LCD,
LCE, CL4M, and ProbCache, while remaining
comparable to CBCP.

response hops, improving

sabejuenpesig

(i) Involves significant computational overhead and
added complexity in implementation.

(ii) Requires additional computational overhead to
track per-node content popularity.

(iii) Increases memory usage compared to simpler|
caching schemes.

Performance depends on Zipf distribution; low o
reduces benefits.

(iv) Higher complexity than simple schemes like LCE|
or ProbCache, affecting scalability.

Requires computation of HOP index for cache node
selection, adding processing overhead.

(v) CHR Performance improvement depends on cache
size; smaller caches reduce benefits.

(vi) Latency performance gain is smaller when Zipf
parameter o is low, as content popularity is more
uniform.

(vii) Link load is slightly higher than CBCP in some
scenarios due to lack of consideration of global content
popularity.

(viii) Link load performance is not optimal when cache
capacity is increased from 0.1 to 0.25.

Content Caching Strategy for
(CCndnS)[34]

NDN with Skip

SIueY2SIA

Breaks cache dependencies by distributing file
segments along the subscriber—producer path. Each
cache independently handles its own queries,
reducing unnecessary cache checks and latency.

sJa)oWweled

Metrics:

network hit probability,Router hit Probability (edge
router), Average hop distance,CS hit probability for an
edge router,Edge Router Cache Size,

CS Miss Probability,Skip Error Probability
Topology:Abilene topology

Simulator: purpose-built simulator
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sabejuenpy

(i) It has higher Router hit Probability when s=3 or 5.
(ii) Network probability

quickly exceeds when CS size increases.

(iii) For specific zipf (a=2.5) distribution the average
hop distance is minimum.

(iv) It specify that Targets specific routers likely to
hold a chunk, reducing router miss probability

(v) Balances traffic between edge and core routers,
avoiding edge-dominated caching

(vi) Reduces memory latency and postpones router
saturation

(vii) Eliminates the filtering effect so that core caches
remain effective even when edge caches grow

(viii) Reduces redundancy without requiring extra
coordination or control messages

(ix) Provides a simple and accurate analytical model
for predicting hit ratios and hop count

(x) Allows use of advanced eviction policies like
SLRU to reduce cache pollution

safeluenpesiq

(i) Overall network hit probability remains unaffected
despite reduced router misses

(i) Skip errors can occur when Interests bypass caches
that actually hold the data
(iii) Requires careful tuning of parameters such as
segment count (S) and hop bound (H); larger S reduces
skip errors but increases hop distance

(iv) More complex than default en-route caching

(v) Cannot fully eliminate redundancy, which is partly|
determined by routing
(vi) Performance depends on correct parameter|
estimation and may require dynamic adjustment

B. Static Cache Replacement
20)
RR(Random Replacement)[25], [37]
< I
@ | Randomly selects a cached content for eviction when
9313' the cache is full.
2.
- | Metrics:
g Execution Time (Wall Clock Time),
3 | Memory Utilization (RAM), Server Load , Round-
@ | Trip Hop Distance, Cache Hit Rate, Instantaneous
(%]

Behavior
Topology: Binary Tree Netwotk Topology

simulator:Icarus [25]

c<j?_ Always + RR Advantages:

QD

é* (i) Balanced content distribution across network

@ | (ii) Low server load in many cases
(iii) Simple implementation (random replacement)
(iv) Fast convergence to stable state

Z | Prob(p) + RR Advantages:

S | (i) Similar to Always+RR (no negative impact)

§ (i) Fast convergence & simple

G | (iii) Stable steady state

o | Always + RR Disadvantages:

@' | (i) Hit rate generally lower than LFU

2 | (ii) Performs worse than Prob(p)+LRU in some

S | scenarios

® | (iii) Randomness may evict useful content

o

@' | Prob(p) + RR Disadvantages:

Z | (i) No real benefit from probabilistic insertion (results

S | nearly identical to Always+RR)

& | (ii) Still weaker hit rate than LFU or Prob(p)+LRU

[¢]

21)| Least Recently Used (LRU)[25], [37]

=

;3; Evicts the least recently accessed content from the

2. | cache.

w

3

o | Metrics:

% Execution Time (Wall Clock Time),

3 | Memory Utilization (RAM)

@ | Topology: Binary Tree Netwotk Topology

“ | Simulator: ndnSIM[37]

Z | Simple LRU Advantages:

S | (i) Simple and easy to implement.

5 (i) Adaptive to recent requests, good for dynamic

‘@ | workloads.

Always + LRU Advantages:
(i) Fast initial response
immediately)

(ii) Simple to implement

(caches everything
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<
;0'_;; Evicts the least frequently item from memory
a.
Prob(p) + LRU Advantages
(i) Reduces duplicates ]’
(ii) better server load reduction §
(iii) Higher cache hit rate across node levels 3
(iv) Better round-trip hop distance than Always+LRU 5]
(v) Lower memory waste @ )
Metrics:
Execution Time (Wall Clock Time),
Memory Utilization (RAM)
Topology: Binary Tree Netwotk Topology
;S,' Simple LRU Disadvantages: Simulator: Icarus/ ndnSIM
(o
§ (i) LRU Suffers from performance degradation when
& | cache overflows (blind replacement).
& | (ii) Does not consider content popularity.
(iii) may retain less relevant content in dynamic
environments.
(iv) can evict items that later regain popularity, z
leading to suboptimal cache performance. s ]
(v) It may produce higher miss rates compared to 2 | Simple LFU Advantages:
policies like LRFU, especially under high request <Q
loads. @ | (i) LFU has high wall clock time w.r.t. content
(vi) Results in higher stretch ratio than ARC Catalogue size.
performance degrades under the Independent (ii) Simple and easy to implement effective for stable
Reference Model (IRM). and predictable access patterns.
(iii) retains frequently accessed items, ensuring
o popular content remains available.
% | Always + LRU Disadvantages: (iv) minim!zgs ca_che _misses for popular items;
% (|) H|gh server load due to redundant rep“cas I’ESOUI’CG-effIC_IEHt SIﬂCG‘_ It (_jOES not require extensive
2 | (ii) Poor cache hit rate beyond first-hop routers recency tracking, resulting in lower overhead
& | (iii) Worst round-trip hop distance in cascading (v) performs optimally under IRM compared to LRU.
& | topology
(iv) Converges fast but to a low-performance steady
state : » | Always + LFU
o | Prob(p) + LRU Disadvantages S
@ S
:.)- (|) Slower convergence § (|) Best CaChe hlt rate OVera”-
2 | (long initial warm-up) @ | (ii) Strong server load reduction
8 | (ii) Sensitive to p value (too small p delays caching) (iii) Shorter round-trip hop distance
22)[ Least Frequently Used (LFU)[25], [37] (iv) Stable steady state performance
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> <
g‘ P_rob(p) + LFU _ § Evicts the oldest data item in memory, meaning that
2 (i) Can reduce unnecessary caching under stable 2 | the item loaded first is replaced by new incoming
%‘;2 patterns % data.
9 o
‘é Simple LFU Disadvantages: § Metrics:
S | (i) Struggles to adapt to changing content popularity. 2 | Execution Time (Wall Clock Time),
5 (i) prone to cache pollution when historically popular @ Memory Utilization (RAM)
< | but currently irrelevant items occupy space. @ Topology: Binary Tree Netwotk Topology
@ | (iii) relatively complex to implement. Simulator: lcarus
(iv) exhibits a higher stretch ratio than ARC;
computationally expensive.
(v) unsuitable for large caches due to increased S ] ] ]
Comp|exity with cache size. é (l) Slmple to Implement, with low Computatlonal
(vi) LFU policy incurs O(n) replacement cost, leading 2 | overhead. _ _
to performance degradation at large cache sizes < | (i)  provides predictable behavior by always
compared to LRU, FIFO, and RAND. @ | removing the oldest item.
(iii) efficient for streaming data where older items are
less likely to be reused.
g_ (iv) requires no tracking of access frequency or
2 recency.
s (v) Memory utilization does not vary much across
2 | Always + LFU policies (NULL = LRU = FIFO = RAND).
«Q
&
(i) Computationally expensive (O(n) updates) o
(ii) Susceptible to stale content pollution if access g | (i) Does not consider content popularity, so frequently
patterns shift g accessed items may be evicted prematurely.
= | (ii) performs poorly in non-sequential or irregular
& | access patterns.
@ | (iii) lacks of adaptability to changing popularity
trends.
(iv) prone to thrashing when the working set exceeds
@] cache size.
g Prob(p) + LFU (v) results in the highest stretch ratio among common
< | (i) Higher server load than Always+ LFU policies.
% (ii) Cache polluted by stale content with high past
< | frequency 24
@ | (iii)Poor hit rate compared to Always+ LFU Least Recently Frequently Used (LRFU) [38]
(iv) Converges to a weak steady state, worse with
small p = | Uses Combined Recency Frequency (CRF) values to
@ | prioritize cached items, considering both how often
23) %:3' and hpw_ recently they were accessed. LRFU merges
FIFO (First in First Out)[25] % | the principles of LFU and LRU.
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o | Metrics: o | Metrics:
S | HitRate, 5 | Cache-hit rate,
3 Miss Rate 3 Client Goodput,
@ | Topology: No specific multi-node layout, links, or @ | Video Quality Distribution,
@ | paths are modeled—the emphasis is on cache | Source Load Reduction
behavior per node. Topology: Layered Topology
Simulator: of 1 source ,123 clients and 45 routers
Custom C++ implementation using GCC compiler Simulator: Custom NetCodNDN-based simulator
(no standard simulator like ndnSIM was used) (event-driven)
» | (i) Higher cache-hit rate than LCE+LRU
3 | (i) Makes more informed decisions by balancing 2 | (ii) Increased goodput at clients
S |recency and  frequency, improving  cache § (iii) More high-quality video segments delivered
& | performance. & | (1080p)
& | (ii) Produces a lower miss rate compared to LRU, & | (iv) Reduced source load (~10% less vs LCE+LRU)
& | especially as the number of generated interests (v) Better cache utilization by storing popular content
increases. at the edge.
(iii) Performs better with larger cache sizes, making it (vi) Improve user experience.
suitable for systems with high storage capacity.
(iv) Dynamically adapts to changing access patterns
through CRF values. 1 : —_—
(v) Enhances user satisfaction by retaining relevant § égdmg)re complex: (popularity estimation + network
content and reducing retrieval latency. S | (i) Limited cache size (0.9%-2.3% of source data)
o (i) More complex to implement compared to LRU or g (iii)) Dependent on adaptation logic (dash.js)
@ | LFU due to CRF maintenance. @ ; ; PR .
2 (ii) Continuous CRF updates introduce computational @ | (iv) Higher |n|t|a_1I delay vs LCE+_N0L|m|t
s overhead.  especiall P in_ hiah-fre uencp acCess (v) Implementation harder than simple LRU/LCE
§ . ' P y 9 q y Potential problem of cache pollution.
& | environments.
@ | (i) May still underperform in bursty or highly 26)| Content Popularity Based Caching(CPBC)[40]
unpredictable access patterns.
(iv) Can evict still-relevant content if it is not recently
accessed. = .
(v) Requires higher memory usage (maintains both S CPBC operates b_y maintaining a qata structure that
heap list and linked list), which may be problematic & | tracks the popularity of content within a cache.
in resource-constrained systems. i
C. ) ) o | Metrics:
Dynamic Cache Replacement Techniques & | cache hit ratio (CHR), Average number of hops
25) 3 Topolog_y:
Popularity-based Network Coding (PopNetCod) [39] g Barabasi-Albert (BA) model network
z In this method Each router measures the local » | (i) High cache hit ratio due to popularity-aware
@ | popularity of content objects dynamically by S | content assignment. (ii)Reduced average number of
S | analysing incoming requests. The replacement of data % | hops — faster content delivery.
& | from content store is based on the popularity & | (iii) Load balancing across management nodes.
@' | information collected. & | (iv) Efficient utilization of network resources and
3 management nodes.
(v)Reduced latency.
(vi) Efficient bandwidth usage.
(vii) Adaptability.
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g g
g (i) CPBC may lead to resource underutilization if the g (i) Higher computational complexity (Bloom filter +
S popularity of cached content changes rapidly. S collaborative decision logic)
= | (ii) Performance Under Fluctuating Demand. = | (ii) Performance depends on accurate popularity &
c§ (iii) Requires knowledge of content popularity in % request patterns
@ | advance. @ | (iii) Overhead in maintaining cache collaboration
(iv) ILP(Integer Linear Programming) optimization (iv) May be less efficient under sudden shifts in
can be computationally expensive for large networks. content demand
(v) Does not account for propagation delay,
processing time, or bandwidth limitations. 2
(vi) Performance may degrade if popularity 8 .
distribution changes dynamically. Adaptive Replacement Cache (ARC)[42]
27 | Bloom-filter-based  request node collaboration Z
caching(BRCC)[41] § ARC took advantages of two known caching
2 | strategies LRU and LFU. It manages the Cache
< @ | entries based on both recency and frequency.
§ BRCC dynamically adjust data deployment based on 3 Y a y
5 request frequency and proximity to subscriber.
3 & :
o | Metrics:
g Cache Hit Count , Cache Miss Count, Cache Hit
@ | Ratio
@ Topology: (3x3),(4x4)
o Metrics: (5%5) ' ' '
S | cache hit ratio Grid Topology
2 (.CHR)' o Simulator: ndnSIM
@ | first hop hit ratio(FHHR),
© | average route hop (ARH), average request dela _ . . .
g P ) g q y (i) Achieves higher hit rate than LRU (up to 4-5%
(ARD) > |
Topology: 2 | improvement).
NDN Network Topology § (i) Requires smaller Content Store size to achieve the
Simulator: & | same hit rate as LRU (e.g., 60 vs 100).
MATLAB + C++ integrated simulator & | (iii) Adapts effectively between recently used and
frequently used content.
L S (iv) No manual tuning parameters required.
§ S&A:/"Eher CHR & FHHR than LCE, ProbCache, (v) Better cache utilization and storage efficiency.
8 (if) Caches near subscribers to reduce dela o _(i) Performance gain_ decreases_ as interest rate
3 (iii) Collaborative push of evicted data tOV\)l/al’d core g | Increases; converges with LRU at high rates.
(iv) Reduces redun%ancy and improves diversity s%- (1) Slightly more cgmglex than LRU due to dual-fist
g L management (T1 and T2).
(v) Efficient storage space utilization _ § Hit rgte decréases as gri()i size increases.
(vi) Lower ARH and ARD across varying cache sizes S | (i) Slightly higher computational —overhead
compared to LRU.
29 | EEC(Energy Efficient in Caching) [43]
z EEC employs an energy efficient cache placement
@ | (EECP) strategy that determines caching decisions
> | based on energy consumption. It optimize the energy
2. | efficiency of content caching and transmission.
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o | Metrics: » | () Maintains content popularity info via History
g Cache hit rate (CHR), Average response hops (ARH), S | Table (HT), even after content is evicted.
3 | Energy savingrate  (ESR) S | Outperforms LRU, LFU, LFUDA, RANDOM across
@ | Topology: & | all real topologies.
© | Physical Network Topology & | (ii) ~10-19% higher cache hit ratio.
Simulator: (iii) Lower hop count (up to 3.5% reduction).
ndnSIM (iv) Lower end-to-end delay (up to ~13.8%
3 | (i) Highest cache hit rate (up to 75.4% for a=1) reduction).
S | (ii) Lowest average response hops (5.04 for a=1) (v) Reduces congestion & retransmissions by
£ | (iii) Highest energy saving rate (64.3% for o=1) lowering hops and increasing hits.
& | (iv) Effectively uses neighbor cache space (vi) Performs best at Zipf o = 0.7, widely considered
& | (v) Adapts caching based on content popularity and realistic.
node centrality
(vii) Reduces latency and network energy Higher cache hit ratio,
consumption Adaptability,
o | () Performance depends on cache size, content
g number, and o, o
2 | (ii) More complex cache management due to @' | (i) Extra memory overhead due to History Table.
S | neighbor cooperation 2 | (ii) Performance depends on proper HT size tuning
& | (ili) Requires accurate estimation of content S | (3% of CS size found best).
& | popularity & | (iii) Does not handle time-varying popularity (risk of
(iv) Limited improvement if cache space is & | cache pollution).
insufficient (iv) Tested only with one producer — scalability with
30 | Name Popularity Algorithm (NPA)[44] multiple producers not evaluated.
(v) Results based on synthetic Zipf traffic, not real
=z traces.
§ NPU operates by maintaining a history of content i i
& | popularity, allowing it to make informed decisions 31 | Content Popularity ranking (CPR)[45]
g' about which items to keep in the cache.
<
§ CPR assigns a ranking to content based on how
o | Metrics: 2 | frequently it is requested. Only content that exceeds a
g CHR, No. of Hops, g certain popularity threshold gets cached. When cache
3 End-to-End Delay space is full the least content is evicted first.
@ | Topology:
“ | Telstra Topology,
AT&T Topology,
Tiscali Topology
Simulator:ndnSIM
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- g | () Limited Testbed Scale — Evaluated on only 5
g Metrics: @ | servers and 10 clients; scalability to larger networks
2 | Average Content Delivery Time g | was not studied. L _ _
@ | Topology: Testbed architecture § (i) Incomplete Formalization - Algorlthm details
“ |je. Real-world ICN-based testoed with 5 & | were desc_:rlbed conceptually, with promise qf fu_II
geographically distributed servers (3 remote + 2 3 prpppsal in future work; mathematical modeling is
cloud) and 10 client devices connected via missing. _ ) o .
Ethernet/Wi-Fi/4G across two cellular base stations; (iiii) Focus on Single Metric — Primarily optimized for
topology configurable and scalable content delivery time, whlle other kgy cach!ng
Simulator: they built a real-world ICN testbed metrics (e.g., bandwidth savings, server hit reduction
ratio) were not fully analyzed.
(iv) Producer Scalability Not Addressed — Paper
mentions scalability issues with multiple producers as
a limitation for future work.
(v) Overhead of Popularity Calculation — Continuous
tracking of request counts, file types, and publication
times may introduce computational overhead in large-
scale deployments.
(vi) Mobility Dependency — Performance benefits
partly depend on the additional mobility support
> | (i) Popularity-Aware Caching — Considers request function, making it less isolated as a pure caching

S | frequency, file type, and content age to rank strategy.

§ popularity, ensuring that frequently used and relevant 32 | MultiCache[46]

& | content stays in cache.

& | (ii) Efficient Cache UtiIiz_ation—Prevents duplication = It is an overlay network architecture designed to
across all servers by storing popular content closer to @ | enhance control for network operators by utilizing a
clients, improving overall cache hit ratio and reducing = | distributed caching scheme. It aims to improve traffic
rg(_jundancy. ) ) ) 2. | localization and resource utilization, addressing
(iii) Reduced Content Delivery Time — By caching 3 | inefficiencies in the current Internet architecture. The
popular content near consumers, response time is study also explores the feasibility of deploying this
minimized compared to basic CCN and the current functionality within existing networks.

Internet.
(iv) Mobility Support — Works with the developed
mobility function to ensure seamless content delivery
even when clients move between base stations.
(v) Real-World Validation — Unlike many simulation- o | Metrics:
based studies, CPR was implemented and tested on a § cache hit ratio (CHR) and intra-domain cache hit ratio
real ICN testbed, demonstrating practical feasibility. 3 (CHR-Intra)
(vi) Dynamic Adaptation — PopularityThreshold @ | Topology:
allows caching decisions to adjust automatically to % | Generated using GT-ITM (Georgia Tech Internet
changing content popularity. Topology Model)
Simulator: OMNeT++ and OverSim Framework
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| (i) Achieves very high cache hit ratio (up to 98.5%) > (i) Popularity & Size-Aware means it uses
S | (ii) Reduces overlay multicast traffic through traffic 2 | popularity-density value (oc = popularity/size) —
& | localization. 5 ensures that only useful and popular content is
& | (iii) Overlay-aware eviction prevents premature g cached.
& | removal of active data. & (if) When the popularity-density value increases,
(iv) No extra control signaling overhead for cache QCR is working exponentially.
discovery.
(v) Supports flexible replacement policies (LRU, (iii) It considers the data packet’s QoS.
MRU, MFU). (iv) It considers data chunk’s popularity.
(vi) Effective performance with only 25-50% (v) Consider the size of data packet.
deployment density o (i) High implementation complexity,
o | (i) Requires additional OAR infrastructure, increasing % | Adding extra bits like c-tag and p-tag to data
& | costand complexity. 2 | chunks and cache store table.
S | (ii) Cache replacement policies (LRU, MRU, MFU) % (if) Splitting cache into sub-caches may lead to
& | show similar performance, no clear superior one, S under-utilization if one class is under-loaded while
& | (iii) MFU chosen mainly for simplicity, not better 1] another is overloaded.
& | performance. (iii) Caching happens during content forwarding
(iv) Fragment-level caching adds management using PIT info, not immediately.
complexity. (iv) QCR ignores Some Useful Data.
(v) High localizability factor may overload caches 34| Dynamic fine-grained popularity-based cache
and increase eviction. replacement (FGPC) & Dynamic Fine-Grained
(vi) Dense deployments reduce request aggregation Popularity-based Caching
and local cache hit rates (DFGPC)[48]
33 — | Dynamic
The QoS-aware Cache Replacement (QCR) [47] < | Cache Replacement
z QCR policy categorizes the cache store into multiple & | [FGPC = static threshold, less adaptive
@ | sub-cache stores based on different traffic. Each sub- &
o | cache has a varying storage capacity tailored to the DFGPC= dynamic threshold, fully adaptive]
2. | network's needs. The policy evaluates content using a = It maintains a popularity table that records the
3 | popularity-density value, which balances the content's 2 content name, access count, and timestamps to
popularity with its size, ensuring that the most 5 | assess the popularity of each content item. This
valuable content is retained while less valuable = | allows the system to make informed caching
content is evicted. 3 | decisions based on real-time data about content
o | Metrics: usage patterns
5 | No. of cached data, o | Metrics:
3 | No. of replacement operation, § Cache Hit Ratio (Hitting Rate),
@ | No. of Ignored Data, 3 Effect of Cache Size,
v | cache usage behavior across Class A, B, C (traffic T Effect of Simulation Time,
categories) @ | Impact of File Size (a factor)
Topo_logy: ] Topology: three-layer hierarchical Internet-like
I\_/Iultl-hop Vehicular Network Topology topology
simulator: Simulator:
Intel Core 5 Duo CPU OPNET Modeler 16.0
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> FGPC Advantages: > (i) Achieves the h.ighest cache hit rate among all

§ 0 Hich ca\éﬁ; %?tefétio § (I:Ecl):’rgpéa;red strategies (LRU, SRTT, OCRICN,

% g::?)I_S%Vgrlta;frgiZH ratio % (ii) Dynamically adapts to content popularity

’ (iv) Efficient utilizatio.n of cache space 7 cha?gets 0\(/jertt|me using SP, dllscardltngtold popular

e : content and storing new popular content.
(v) Selectivity: Keeps only the most popular (iii) Reduces avgrage FI)?'IE)T and improves user
?\?i?tf#]tp%r:fer:jc;:rl}gr'% ;unlée over MPC response time by prioritizing storage of content
. e " ) with longer retrieval times.

(vii) Handles file size variations better; (iv) Reduces redundant storage of data chunks
compared to LRU and EPPC, leading to more
efficient cache utilization.

> [?F[G)PC A_dvagtagez;l_ (v) Performs well across different network

5 g:?) C)E)nnirigltg r?t Ispt:?gr:elr%it e topﬁlog_les (GEANT, GARR, WIDE) and varying

= Y : cache sizes.

& | (iii) Cache size independence’ (vi) Consistently outperforms strategies that
File size resilience assume fixed content popularity (OCRICN,

o | FGPC Dis advantages: SRTT).

@ | (i) High redundancy ratio (vii) Improves network efficiency by reducing

S | (ii) High memory consumption unnecessary duplication and balancing cache

% (iii) High bandwidth, minimum diversity ratio. usage.

‘;‘3 %%szigigﬂgr?g?ﬁ:;m;yarops o | (i) Slightly higher redundancy than OCRICN due to
(v) Not fully adaptive: Thresholds are fixed, so it § E?S %Z;]J??ehsa?;:t]i.nuous monitoring and updating of
;C)Z?tgcr); s adjust dynamically to changing traffic g content popularity, ~ which  may introduce
DFGPC Disadvantages: & | com putational _overhead._ ;

;D,- (i) Complexit : & | (iii) Complexity is higher compared to simpler

2 (il OveFr)heady strategies like LRU.

S (iv) Performance depends on correct tuning of the SP

5 parameter and reinforcement learning U parameter.

< (v) May require additional simulation or real-time

@ computation for optimal parameter selection.

35 (vi) Assumes  Zipf-law content  popularity;
Discard of Fast Retrievable Content (DFRC) [7] performance may vary with non-Zipf distributions.

(vii) Implementation may be more complex due to
=z Uses FIB table information to calculate content reinforcement learning and dynamic content tracking.

@ | retrieval time based on two parameters: Grade of

g | Retrieval (GOR) and Stale Parameter (SP). 36| PFR (Popularity, Freshness, and Recency) based

2. El:_or;]ten(t:i _Wlthd shprtt_etr retrieval time is assigned a cache content eviction policy.[49]

M;?ri(?;' 15card prionty. z PFR evaluates each cached content based on
g Avera éhit rate @ Popularity  (request  frequency),  Freshness
2 g i > | (remaining lifetime), and Recency (last access
3 égg;i%%;gungfmg 3;?: ,chunks =. | time). It computes a combined EvictionValue and
3 Tonoloav: y 3 removes the content with the highest value when
WIFl):)E ?}/a.panese Internet backbone). cach_e space is negded. This process is dynamic,
GARR (ltalian university/research nétwork), continuously adapting to new requests and content
GEANT (European backbone) . aging, ensuring that the most essential and relevant

Simulator:Icarus data remains in the cache.
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§ g/lﬁtFr;’cs. § Al/ML-based caching manages content selection,
S | Server hit reduction ratio, Average response delay, = | placement, and replacement by predicting content
el Average energy consumption = popularity and user demand. It uses historical data
4 | Topology: 3 | and real-time analytics to ensure that the most
Randomly generated reque_sted contents are_avallable to users. many
Simulator: mat_:hl_ne Iearpmg al_gprlthrr_\ used in this case to
ndnSIM %pgllr_m(z[(; cacthnEdeu_sm;l.DLékLe © rein
: T eep Q-Learning), eep Reinforcement
z 0 Retains hlghl_y popular, _fresh_, and recently used Learning), NMF (Non-negative Matrix Factorization),
S content, improving cache hit ratio. ANN (Artificial Neural Network) Deep RNN
g (if) Reduces the number of requests reaching the » DCEp
= loT publisher, lowering server load. (Recu_rrent Neural Network), RL (Reinforcement
@ o Learning), RNN (Recurrent Neural Network), SNN
& (iii) Lowers average response delay, providing L ;
faster data access to subscribers. (Spiking  Neural Network),CNN (Convolutional
(iv) Decreases average energy consumption due to Neural Network)_, MLP (Multl—ITayer Perceptr(_)n),
fewer retransmissions. ILP (Integer Linear Programming), Q-Learning,
Adapts to dynamic content characteristics in NDN- Hyper Deep Q-Networks (DQNs)
loT networks. o | Metrics: Network scenario:
o (i ReqL_Jires calculation of multiple attribu_tes % ICN,NDN, Edge Computing etc.
g | (popularity,  freshness,  recency),  adding 3 | simulator:
< | computational overhead. _ & | Any simulator can use for the performance
S | (ii) Performance depends on proper weight @ analysis. like ndnSIM,
(;,g; se:jectlonﬁ_fo_r attributes; suboptimal weights can Icarus, miniNDN, ccnSIM
o reduce ermciency. . (i) Improved Prediction Accuracy: Al/ML
(iii) Slightly more complex to implement than 95 algorithms analyze historical data to predict
simpler policies like FIFO or LRU. . 2 | content popularity more accurately, leading to
(iv) May evict less popular content even if it could & | higher cache hit ratios, reduced latency, and
be_ requested later, potentially leading to occasional 2 enhanced user experience.
misses. ) o (ii) Dynamic Adaptability: Can adapt in real time
(v) Needs continuous monitoring of content to changes in user behavior and network
attributes, which can be challenging in resource- conditions, maintaining relevance of cached
constrained 10T devices. content.
37| AI/ML based caching[49], [50] (iii) Enhanced Resource Utilization: Improves use
of limited cache storage, reduces redundancy, and
enhances overall network performance.
(iv)  Overcoming  Traditional  Limitations:
Traditional caching techniques often cannot handle
the dynamic nature of content popularity and
network topology. ML/DL provides a way to
analyze data, generate insights, and predict user
needs, leading to more efficient caching systems
o (i) Complexity and Overhead: AI/ML models
7 introduce computational overhead for training and
=3 inference, requiring more resources, which may be
8 infeasible in some environments.
8 (ii) Data Dependency: Performance relies heavily
] on the availability of high-quality historical data.
Poor or insufficient data can lead to inaccurate
predictions and degraded caching performance.
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Max-Gain In Network Caching (MAGIC) [15]

Functions as both a cache placement and cache
replacement algorithm. It updates content
popularity based on local cache gain and max-gain
values, aiming to reduce bandwidth consumption.

WISIURYISN

Metrics :

Bandwidth consumption,

Server hit ratio,

Caching operations.

Topology: wireless network topology
simulator: Social CCNSim

SJalsweled

(i) Reduces bandwidth by 34.5%.

(ii) Lowers server hit ratio by 17.91% .

(iii) Reduces caching ops by 38.84%.[52]

(iv) Provides high content diversity and achieves a
high cache hit ratio under certain conditions.

(v) Bandwidth efficiency.

(vi)Popularity-aware caching.

(vii) Fairer caching placement

sabeiuenpy

(i) Overhead of Max-gain calculation.

(ii) Extra fields in Interest/Data packets.

(iii) Biased caching toward heavy-request
consumers.

Limited scalability.

(iv) Replacement cost not fully optimized.

(v) Requires more resources and incurs higher
costs due to its complex mechanism. May increase
retrieval times and lead to lower cache hit ratios
compared to CPCCS. Also results in higher
memory consumption.

safeluenpesiq

B. Insight from Comparative analysis

As summarised table 1, the cache placement strategies
such as LCE, LCD, Magic etc. do not leverage with the
PIT or FIB meta data which make reduction in the feature
of network dynamicity, where the static cache
replacement techniques like FIFO, LRU, LFU, RR and
LRFU do not take the decisions based on real time data,
hence these algorithms are static in nature which base on
specific rule consecutively lead to degrade the named data
networking performance. In contrast, by making caching
decisions based on PIT-FIB, it will become adaptive and
dynamically respond to network conditions and improve
overall performance. Also, in dynamic cache replacement
strategies, mostly strategies based on probability and
historical data, they did not take real-time network data for
replacement. Apart from this, most of the machines

learning algorithms are either model-based or based on
static data-driven, so there is a gap regarding the use of
model-free machine learning in NDN for adaptive, real-

time caching.
V1.RESEARCH GAPS AND LIMITATIONS

Based on our literature review, two key research gaps
remain in named data networking (NDN).

1. The absence of caching strategies that jointly use the
PIT and FIB information for adaptive and real-time
decisions.

2. The limited use of model-free machine learning to
enhance the performance of NDN cache replacement.
Despite significant progress, many NDN caching
strategies still face challenges related to content retrieval
time, cache replacement policies. The integration of Al
and machine learning offers promising opportunities to
address these issues. We have gone through the various
research papers from 2020 to 2025 related to caching and
drew a pie chart and bar graph as fig. (6), fig. (7) based on
two parameters, the research paper which was based on
caching strategies with AI/ML technology vs. non-Al/ML,
where Figure 6 clearly indicates that research in caching
based on AI/ML is less than caching without any new
technology of AI/ML and Figure 7 shows the research gap
regarding the lesser use of the PIT and FIB tables.

Caching Techniques based on Al/ML
@ Caching Techniques based on non-Al/ML

Research Papers 2020 to Caching Techniques based on Al/ML

2025 24.7%

Total No. of Research
Caching Techniques based on non-Al/ML Papers =Approx 85
75.3%

Fig. 6. NDN Research papers analysis from 2020 to 2025
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Comparison of PIT & FIB-Based Caching vs. Other Techniques
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Fig .7. Numbers of papers based on caching with PIT and FIB.

VILI. CURRENT CHALLENGES AND EMERGING TRENDS

Most existing caching strategies in Named Data Networking
(NDN) rely primarily on historical content popularity rather
than real-time request information obtained from the Pending
Interest Table (PIT). Leveraging PIT data, such as the number
of incoming faces, outgoing faces, request arrival rates, and
content lifetime, along with relevant Forwarding Information
Base (FIB) parameters, could significantly enhance caching
decisions and overall network performance. However, without
PIT-aware caching, redundant requests and suboptimal cache
utilisation continue to limit efficiency, particularly in high-
traffic environments. Another challenge is the increasing
content demand in large-scale NDN deployments, which puts
pressure on cache capacity and retrieval latency. While
advanced machine learning algorithms can potentially
optimise caching policies, highly complex models may
introduce scalability issues, high computational overhead, and
long convergence times. To address these limitations, model-
free reinforcement learning approaches—such as Q-learning,
multi-armed bandits, and deep reinforcement learning—are
gaining attention in recent studies due to their ability to make
adaptive caching decisions without the need for labelled
datasets or extensive offline training. Integrating these
approaches with PIT- and FIB-aware caching policies presents
a promising research direction for improving adaptability,
scalability, and efficiency in future NDN networks

VIII. FUTURE DIRECTION

SGVU International Journal of Convergence of Technology and Management

E-ISSN: 2455-7528
Vol.12 Issue 1 Page No 65-94

There are various research areas where we can explore the
solution to the problem in terms of caching-related issues.
There are various caching attacks for e.g., time analysis,
bogus announcements, cache pollution, and cache spoofing, in
which we can work to maintain the integrity of caching [53].
The integration of on-path caching with emerging
technologies such as 10T, edge computing, and 5G networks is
also one of the major challenges. By caching content during
transmission, this approach can enhance network efficiency,
reduce latency, and improve overall scalability. With this
understanding, there is a need to develop advanced caching
strategies that incorporate intelligent criteria for content
placement and efficient decision-making for content
replacement. Applying machine learning techniques—
including Markov Decision Processes (MDP), Q-learning, and
dynamic programming—represents a promising avenue.
These machine learning algorithm is based on feedback from
the environment, so if we apply them in the named data
networking, then definitely performance will be increased,
and also we know that routers maintain both tables i.e. PIT
and FIB which is based on real time data if we use these data
for cache replacement then the cache replacement will be
based on current networking condition. So future research
should focus on designing adaptive cache replacement, which
should be based on both tables PIT and FIB because details
like user behaviour and environmental changes, interest
packet and data packet are the main part of communication
for sending requests and obtaining the reply in the NDN,
and all these details are maintained by the same. Leveraging
these parameters can improve cache efficiency, reduce
redundancy, and provide smarter, adaptive content distribution
across the network.

I’X. CONCLUSION

This research paper highlighted the importance of caching
strategies in Named Data Networking (NDN) and their impact
on network performance. This manuscript reviewed and
categorized existing approaches into two major groups: cache
placement and cache replacement, where the basic e.g. for
cache placements and replacements are LCD, LCE and FIFO,
LRU, LFU, and RR, respectively. While these foundational
strategies are simple and widely used but they are static in
nature and cannot adapt to dynamic network conditions, such
as fluctuations in content popularity or variations in PIT in-
records and out-records. The advanced methods of caching,
such as MAGIC, WAVE, and CPBC, achieve higher cache hit
ratios and lower latency, but often introduce computational
complexity. No single caching strategy is universally optimal;
performance depends on network conditions, topology, and
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workload. The paper also reveals that simulation [5] Sui Zb.ISabfir an(é A. Amirée, \}\IENI v TCP/IP:P:’Vhich OXZ Is the Best
H ; H ; H uitable for onnecte ehicles?,” in ecent vances in
methOd(.)IoQIes In NDN caching research remam. highly Mathematics and Technology, S. Dos Santos, M. Maslouhi, and K. A.
diverse in terms of metrics, network topologies, and simulator Okoudjou, Eds., in Applied and Numerical Harmonic Analysis. , Cham:
tools. It is noted that while algorithmic evaluations can be Springer International  Publishing, 2020, pp. 151-159. doi:
carried out on various simulators, ndnSIM remains the most - Il<0-1$01978§-0}310-I3;51)292-8_9a M. Mambo. “A PEKS.Based NON
H H . T. Ko, H. H. aing, an . Mambo, “ -Basel
reliable platforr.n fOI" actual performance measuremen_t in Strategy for Name Privacy,” Future Internet, vol. 12, no. 8, p. 130, July
NDN. Cache Hit Ratio (CHR) emerges as the most W|d9|y 2020, doi: 10.3390/fi12080130.
adopted evaluation metric, often complemented with measures [7] M. Hosseinzadeh, N. Moghim, S. Taheri, and N. Gholami, “A new
such as latency, hop count, and bandwidth savings. However, cache replac’z’ament policy in named data network based on FIB table
advanced metrics like energy efficiency, fairness, and glf.‘?“na“om Telecommun Syst, vol. 86, no. 3, pp. 585-596, July 2024,
. I 0i: 10.1007/s11235-024-01140-7.
Fompmatlo_nal Overhe‘?d are less frequently explored, limiting [8] S. Mastorakis, A. Afanasyev, and L. Zhang, “On the Evolution of
insights into caching performance under real-world ndnSIM: an Open-Source Simulator for NDN Experimentation,”
constraints. Similarly, topology choices vary from simplified gcl)Cf;:OdM“qocﬂqgféis%%nagngfégﬁg vol. 47, no. 3, pp. 19-33, Sept.
ot _ , doi: 10. . .
tree structures to realistic I$P level graphs and loT or [9] M. A Nasem, M. A. U. Rehman, R. Ullah, and B.-S. Kim, “A
vehicular scenarios, yet there is no standardized benchmark Comparative Performance Analysis of Popularity-Based Caching
that enables fair cross-comparison. The contribution of this Strategies in Named Data Networking,” IEEE Access, vol. 8, pp.
study lies in presenting a clear comparative analysis of cache 50057-50077, 2020, doi: 10.1109/ACCESS.2020.2980385. _
placement and replacement strategies, identifying their [10] ! Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
. for information-centric networks,” in Proceedings of the second edition
strengths and weaknesses, and underscoring the research gap of the ICN workshop on Information-centric networking, Helsinki
in exploiting PIT and FIB information for caching decisions. Finland: ACM, Aug. 2012, pp. 55-60. doi: 10.1145/2342488.2342501.
Furthermore, it emphasized the potential of machine learning  [11] \C( Gui a(ling Y-1 Chen, I\‘I‘A ga]ghe I{’Ilacemlipt StigtggyABased oln
; ; P P P ; ompound Popularity in Named Data Networking,” ccess, vol.
to design intelligent caching strategies with the help of graph 8, pp. 196002-196012, 2020, doi: 10.1109/ACCESS.2020.3034329.
neural netWO_rk and Apriori algorithm that_ adapt to dynamic  [12] N. Hazrati, S. Pirahesh, B. Arasteh, S. S. Sefati, O. Fratu, and S.
network environments to enhance the caching decision at the Halunga, “Cache Aging with Learning (CAL): A Freshness-Based
same time also tells that too much use of machine learning in Data Caching Method for Information-Centric Networking on the
NDN caching leads to data dependency, complexity, memory Izrggg‘Z‘O?flghg‘ggghﬁilﬁgiogf{“re Internet, vol. 17, no. 1, p. 11, Jan.
consumption and communication overhead which will effect 131 ¢ A’ Kerrache, G. Rathee, Y. Guellouma, H. Gasmi, and B. Ziani,
to slow down the performance under certain condition. This “Towards an Efficient and Secure Cache Management Using Apriori-
script also specifies that future work should focus on Based Interests Prediction in Narr_led Data Networking,” in 2023 l_lth
developing hybrid caching models that balance computational International Conference o_n'lntelllgent Systems and Embedded De5|g_n.
.. d . . (ISED), Dehradun, India: IEEE, Dec. 2023, pp. 1-6. doi:
efficiency with adaptability, leveraging PIT/FIB data and 10.1109/ised59382.2023.10444543.
lightweight ML techniques to achieve scalable and high- [14] M. wasim Abbas Ashraf, A. Raza, A. R. Singh, R. Singh Rathore, I. W.
performance caching in next-generation NDN architectures. gamaj, a}ndv H};_Hirbe;]t Son% “iitglligel}t Ca(;hinLg Based Xn P0puliar
ontent in Vehicular Networks: eep Transfer Learning Approach,”
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