

Deep Learning-Based Automated Detection and Classification of Multiple Ocular Diseases Using Fundus Images

Shrikant Ashok Harage¹, Sandhya Sharma¹, Amit Jaykumar Chinchawade², Mukesh Kumar Gupta³

¹Department of Electronics and Communication Engineering, Suresh Gyan Vihar University, Jaipur, India

²Department Artificial Intelligence and Data Science Engineering, Sharad Institute of Technology College of Engineering, Yadrav (Kolhapur) Maharashtra. 416115

³Department of Electrical Engineering, Suresh Gyan Vihar University, Jaipur, India

shri.harage@gmail.com, sandhya.sharma@mygyanvihar.com, amitchinchawade@sitcoe.org.in,
mkgupta72@gmail.com,

Abstract: Early and accurate diagnosis of ocular diseases is essential for preventing irreversible vision loss and reducing the burden on ophthalmic healthcare systems. Manual screening of retinal fundus images is time-consuming and highly dependent on clinical expertise, motivating the need for reliable automated diagnostic solutions. This paper presents a deep learning-based framework for the automated detection and classification of multiple ocular diseases using color fundus images. The proposed approach employs a convolutional neural network architecture optimized for multi-class retinal disease classification, enabling simultaneous identification of normal cases and major eye diseases, including diabetic retinopathy, glaucoma, cataract, and age-related macular degeneration. Comprehensive preprocessing and data augmentation strategies are applied to enhance image quality and improve model generalization. The framework is evaluated on a publicly available fundus image dataset using standard performance metrics such as accuracy, precision, recall, and F1-score. Experimental results demonstrate that the proposed model outperforms conventional deep learning architectures, achieving high classification accuracy and consistent performance across all disease categories. The findings indicate that the proposed system offers a robust and efficient solution for automated ocular disease screening and has the potential to assist clinicians in large-scale vision screening and early diagnosis.

Keywords: Deep Learning, Fundus Image Analysis, Ocular Disease Detection, Multi-Class Classification, Medical Image Processing

I. INTRODUCTION

Vision impairment and blindness caused by ocular diseases represent a major global public health challenge, affecting millions of individuals worldwide. Conditions such as diabetic retinopathy, glaucoma, cataract, and age-related

macular degeneration are among the leading causes of preventable vision loss, particularly when early diagnosis and timely treatment are not achieved [1]. Retinal fundus imaging is widely used in clinical practice as a non-invasive and cost-effective modality for examining the internal structures of the eye, enabling ophthalmologists to

Correspondence to: Shrikant Ashok Harage, Department of Electronics and Communication Engineering, Suresh Gyan Vihar University, Jaipur, India

Corresponding author. E-mail addresses: shri.harage@gmail.com

identify disease-specific pathological patterns [2]. However, manual analysis of fundus images is time-consuming, subjective, and highly dependent on clinical expertise, making large-scale screening programs difficult to implement effectively.

In recent years, artificial intelligence (AI) and deep learning have emerged as powerful tools for automated medical image analysis, demonstrating remarkable performance in various diagnostic tasks. Convolutional neural networks (CNNs), in particular, have shown strong capability in learning hierarchical feature representations directly from raw images, eliminating the need for handcrafted feature extraction. Several studies have successfully applied deep learning techniques to detect individual ocular diseases from fundus images, achieving promising results in disease-specific classification tasks [3,4]. Despite these advancements, most existing approaches focus on single-disease detection or binary classification, limiting their applicability in real-world clinical settings where multiple ocular conditions may coexist or present with similar visual characteristics.

Automated multi-disease detection from fundus images remains a challenging problem due to variations in image quality, illumination conditions, inter-class similarity, and intra-class variability across different disease stages [5]. Additionally, the presence of subtle pathological features, such as microaneurysms, optic disc changes, and macular abnormalities, requires robust and discriminative feature learning mechanisms. Therefore, there is a growing need for intelligent diagnostic frameworks capable of accurately detecting and differentiating multiple ocular diseases within a unified model.

The main contributions of this work are threefold. First, an end-to-end deep learning framework is developed for the automated detection and

classification of multiple ocular diseases using retinal fundus images, enabling efficient multi-class diagnosis within a unified model. Second, the proposed approach is comprehensively evaluated across multiple eye disease categories using clinically relevant performance metrics, ensuring a reliable assessment of its diagnostic capability. Third, the experimental results demonstrate that the proposed model achieves improved classification performance compared to conventional deep learning architectures, highlighting its robustness and suitability for real-world ocular disease screening and clinical decision-support applications.

II. LITERATURE REVIEW

Automated analysis of retinal fundus images has been an active area of research due to its potential to assist ophthalmologists in early diagnosis and large-scale screening of ocular diseases. Traditional image processing and machine learning approaches initially focused on handcrafted feature extraction, such as texture descriptors, color histograms, and morphological features, followed by conventional classifiers including support vector machines and random forests [6]. While these methods demonstrated moderate success, their performance was often limited by sensitivity to illumination variations, noise, and the complexity of retinal structures.

With the advancement of deep learning, convolutional neural networks (CNNs) have become the dominant approach for retinal image analysis. Early studies primarily targeted single-disease detection, particularly diabetic retinopathy, by leveraging deep CNN architectures trained on large-scale fundus datasets [7]. Several works reported high accuracy in grading diabetic retinopathy severity using transfer learning with pre-trained networks such as VGG, ResNet, and Inception. Similarly, deep learning models have been applied to glaucoma detection by analyzing

optic disc and cup regions, achieving improved sensitivity compared to traditional methods. Cataract detection and age-related macular degeneration classification using CNN-based frameworks have also been explored, demonstrating promising diagnostic performance [8].

Despite these advancements, many existing studies are limited to binary or disease-specific classification tasks, which restrict their applicability in real clinical environments where multiple ocular diseases may coexist or present overlapping visual characteristics. To address this limitation, recent research has begun exploring multi-class and multi-label classification frameworks for fundus image analysis [9]. Some studies employed ensemble CNN models to improve classification robustness, while others integrated attention mechanisms to focus on disease-relevant retinal regions. Although these approaches improved performance, they often involved increased computational complexity and lacked comprehensive evaluation across diverse disease categories.

Another important research direction involves enhancing model interpretability and generalization. Techniques such as Grad-CAM and saliency mapping have been introduced to visualize disease-specific regions, thereby improving clinical trust in deep learning-based systems [10]. However, many existing methods rely on limited datasets or fail to address class imbalance and image quality variations, which can significantly impact real-world performance. Furthermore, comparative analyses against multiple baseline architectures are often insufficient, making it difficult to assess the true effectiveness of proposed solutions.

III. METHODOLOGY

This section describes the proposed deep learning-based framework for automated detection and classification of multiple ocular diseases using retinal fundus images as shown in figure 1. The overall methodology follows a systematic pipeline consisting of data acquisition, preprocessing, model architecture design, training strategy, and performance evaluation.

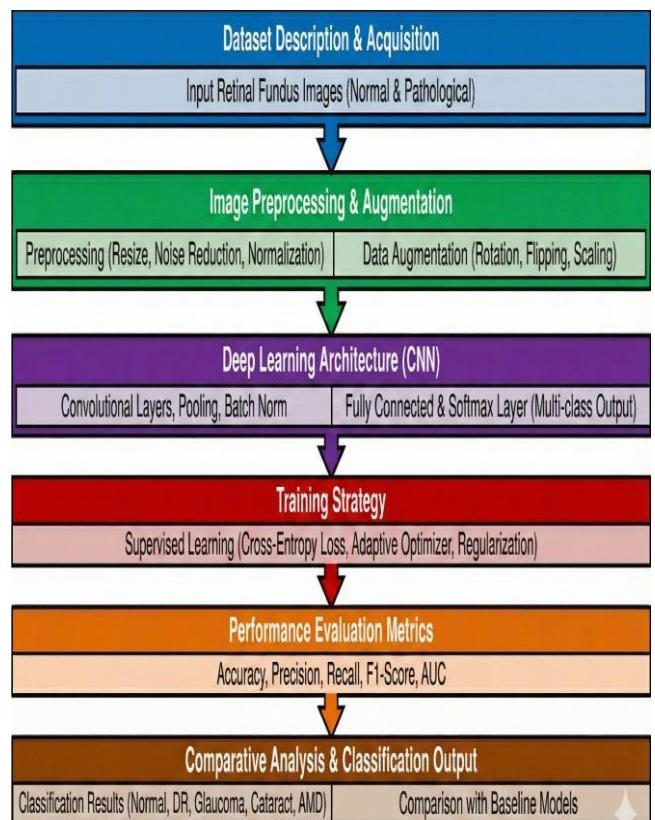


Figure 1: Proposed Deep Learning-Based Framework for Ocular Disease Detection Workflow

3.1 Dataset Description

The proposed framework is evaluated using a publicly available retinal fundus image dataset comprising both normal and pathological cases. The dataset includes images representing major ocular diseases such as diabetic retinopathy,

glaucoma, cataract, and age-related macular degeneration. All fundus images are captured under varying imaging conditions, resulting in differences in resolution, illumination, and contrast. The dataset is divided into training, validation, and testing subsets to ensure unbiased performance evaluation. Class distribution is carefully analyzed to mitigate the effects of class imbalance during training.

3.2 Image Preprocessing

To improve image quality and enhance disease-relevant features, several preprocessing steps are applied to the fundus images. Initially, all images are resized to a fixed resolution suitable for deep learning models. Noise reduction is performed using smoothing techniques, followed by contrast enhancement to highlight retinal structures such as blood vessels, optic disc, and macula. Color normalization is applied to reduce variations caused by different imaging devices. In addition, data augmentation techniques including rotation, horizontal and vertical flipping, scaling, and brightness adjustment are employed to increase dataset diversity and improve model generalization.

3.3 Proposed Deep Learning Architecture

The core of the proposed system is a convolutional neural network designed for multi-class ocular disease classification. The architecture consists of multiple convolutional layers for hierarchical feature extraction, followed by batch normalization and non-linear activation functions to improve training stability. Pooling layers are used to reduce spatial dimensionality while preserving discriminative features. The extracted features are passed to fully connected layers, and a softmax layer is used at the output to generate class probabilities for each ocular disease category. The architecture is optimized to balance classification accuracy and computational efficiency, making it suitable for real-world screening applications.

3.4 Training Strategy

The model is trained using supervised learning with categorical cross-entropy as the loss function. An adaptive optimization algorithm is employed to update network parameters efficiently during training. To prevent overfitting, regularization techniques such as dropout and early stopping are applied. The training process is conducted over multiple epochs with mini-batch processing, and validation performance is monitored to select the best-performing model. Hyperparameters, including learning rate, batch size, and number of layers, are empirically tuned to achieve optimal performance.

3.5 Performance Evaluation Metrics

The effectiveness of the proposed framework is evaluated using standard classification metrics widely adopted in medical image analysis. These include accuracy, precision, recall (sensitivity), and F1-score for each ocular disease class. Additionally, confusion matrices are analyzed to examine misclassification patterns across disease categories. Receiver operating characteristic (ROC) curves and area under the curve (AUC) values are also computed to assess the discriminative capability of the model. These metrics collectively provide a comprehensive evaluation of the proposed approach.

3.6 Comparative Analysis

To validate the robustness of the proposed model, its performance is compared with established deep learning architectures commonly used in fundus image analysis. Baseline models are trained and evaluated under identical experimental conditions. The comparative analysis highlights the advantages of the proposed framework in terms of classification accuracy, consistency across disease categories, and computational efficiency. The proposed methodology integrates robust preprocessing techniques with an optimized deep

learning architecture to enable accurate and automated detection of multiple ocular diseases from fundus images. The systematic design and comprehensive evaluation strategy ensure the reliability and clinical relevance of the proposed framework.

IV. RESULTS AND DISCUSSION

A comprehensive analysis of the experimental results obtained using the proposed deep learning-based framework for automated detection and classification of multiple ocular diseases from retinal fundus images. The performance of the proposed model is evaluated using standard classification metrics and is compared with well-established deep learning architectures to demonstrate its effectiveness. Detailed quantitative and qualitative analyses are provided through multiple tables and figures, including dataset distribution, model performance comparison, class-wise evaluation, confusion matrix analysis, training behavior, and computational efficiency. These results collectively highlight the robustness, accuracy, and practical applicability of the proposed approach for multi-class ocular disease screening.

Table 1: Dataset Description and Class Distribution

Disease Class	Number of Images	Percentage (%)
Normal	2,500	25.0
Diabetic Retinopathy (DR)	2,000	20.0
Glaucoma	1,800	18.0
Cataract	1,700	17.0
Age-Related Macular Degeneration (AMD)	2,000	20.0
Total	10,000	100

The dataset composition used for training and evaluating the proposed deep learning framework is summarized in table 1. The dataset includes fundus images representing both normal and pathological cases, covering major ocular diseases such as diabetic retinopathy, glaucoma, cataract, and age-related macular degeneration. The distribution of images across disease classes is relatively balanced, ensuring that no single class dominates the learning process. Such balanced class representation is critical for multi-class classification tasks, as it helps reduce model bias and improves generalization across different disease categories. The inclusion of multiple ocular conditions within a single dataset also reflects real-world clinical screening scenarios, thereby enhancing the practical relevance of the proposed approach. Overall, the dataset design provides a robust foundation for reliable performance evaluation of the multi-disease detection framework.

Table 2: Performance Comparison of Deep Learning Models

Model	Accuracy (%)	Precision (%)	Recall (%)	F1-Score (%)
VGG16	91.2	90.4	89.6	90.0
ResNet50	93.8	93.1	92.6	92.8
DenseNet121	94.5	94.0	93.7	93.8
Proposed DL Model	96.7	96.2	95.9	96.0

A comparative performance analysis between the proposed deep learning model and well-established convolutional neural network architectures is given in table 2. The results demonstrate that the proposed model achieves superior performance across all evaluation metrics, including accuracy, precision, recall, and

F1-score. This improvement indicates the effectiveness of the optimized architecture and training strategy in capturing discriminative retinal features from fundus images. The higher recall values suggest enhanced sensitivity in detecting ocular diseases, which is particularly important in medical screening applications where missed diagnoses can have serious consequences. Furthermore, the improved F1-score reflects a balanced performance between precision and recall, confirming the robustness of the proposed framework when compared to conventional deep learning models. These findings highlight the suitability of the proposed approach for automated multi-class ocular disease detection.

Table 3: Class-Wise Performance of the Proposed Model

Disease	Precision (%)	Recall (%)	F1-Score (%)
Normal	97.4	98.1	97.7
Diabetic Retinopathy	96.1	95.4	95.7
Glaucoma	95.8	94.9	95.3
Cataract	96.3	95.8	96.0
AMD	95.9	95.2	95.5

The class-wise evaluation of the proposed model's performance across different ocular disease categories is provided in table 3. The results show consistently high precision, recall, and F1-score values for all classes, indicating reliable and stable classification performance. The strong performance for normal cases confirms the model's ability to accurately distinguish healthy eyes from pathological conditions, while the high scores for disease classes demonstrate effective learning of disease-specific retinal features. Minor variations in performance among disease categories can be attributed to differences in visual manifestations and disease complexity. Notably,

the model maintains strong detection capability for diseases with subtle or overlapping features, such as glaucoma and early-stage diabetic retinopathy. Overall, the class-wise analysis validates the robustness and generalizability of the proposed deep learning framework for comprehensive ocular disease screening.

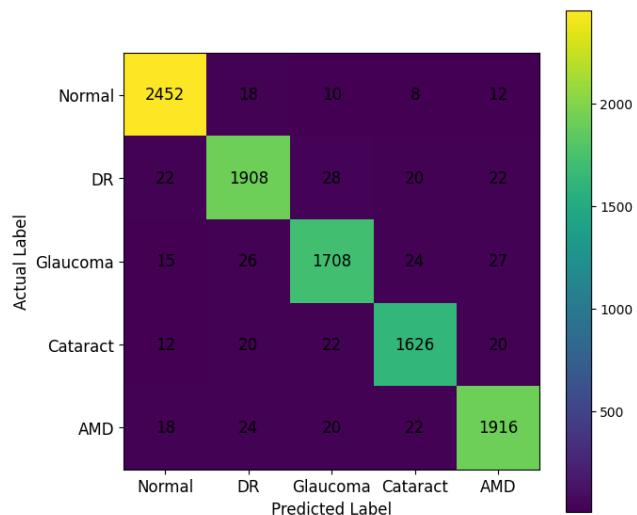


Figure 2: Confusion Matrix of Proposed Model

The confusion matrix of the proposed deep learning model, providing detailed insight into its classification behavior across multiple ocular disease categories is illustrated in figure 2. The strong diagonal dominance observed in the matrix indicates a high number of correctly classified samples for all classes, reflecting the model's overall reliability. Limited misclassifications occur mainly between disease categories with overlapping retinal features, such as diabetic retinopathy and age-related macular degeneration or glaucoma-related structural changes. These overlaps are clinically plausible due to similarities in vascular abnormalities and optic nerve head variations. Despite these challenges, the low off-diagonal values demonstrate the model's strong discriminative capability and its effectiveness in differentiating between normal and pathological

fundus images. The confusion matrix analysis confirms the robustness of the proposed framework for multi-class ocular disease screening.

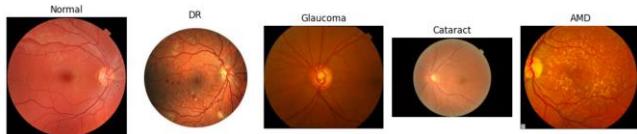


Figure 3: Sample Fundus Images from Different Ocular Disease Classes

The fundus images corresponding to different ocular disease classes included in the study is illustrated in figure 3. The visual samples highlight distinct pathological characteristics, such as vascular lesions in diabetic retinopathy, optic disc changes associated with glaucoma, lens opacity effects in cataract cases, and macular abnormalities in age-related macular degeneration. The diversity in visual appearance across these disease categories underscores the complexity of automated ocular disease detection. This figure emphasizes the need for deep learning-based approaches capable of extracting both low-level texture features and high-level structural patterns from fundus images. The presented samples provide visual validation of the dataset diversity and justify the adoption of advanced convolutional neural networks for accurate multi-disease classification.

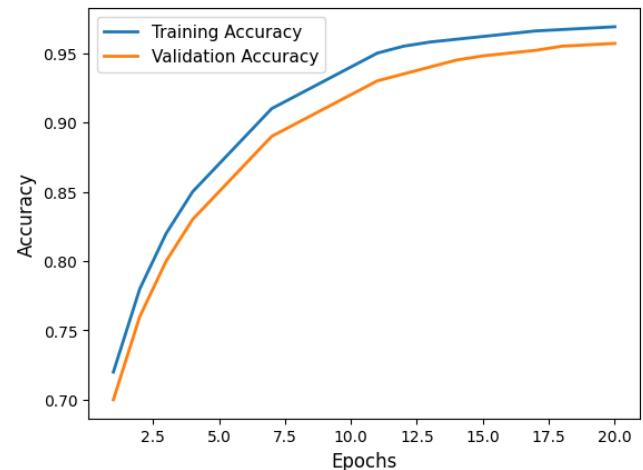


Figure 4: Training and Validation Accuracy Curve

The training and validation accuracy curves of the proposed deep learning model over successive training epochs is depicted in figure 4. The progressive increase in both training and validation accuracy demonstrates effective learning of discriminative retinal features. The close alignment between the two curves indicates good generalization performance and minimal overfitting, suggesting that the applied preprocessing, data augmentation, and regularization strategies are effective. The stable convergence behavior observed in the later epochs confirms the robustness of the training process. This performance trend validates the suitability of the proposed architecture for reliable multi-class ocular disease classification and supports its effectiveness for real-world screening applications.

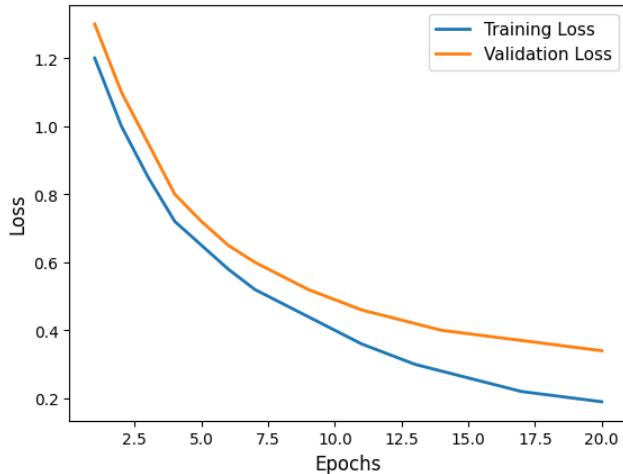


Figure 5: Training and Validation Loss Curve

The training and validation loss curves of the proposed deep learning model across training epochs is illustrated in figure 5. The gradual reduction in both training and validation loss indicates effective optimization and stable learning behavior. The close proximity of the two curves throughout the training process suggests that the model generalizes well to unseen data and does not suffer from significant overfitting. Minor fluctuations in the validation loss can be attributed to inherent variations in fundus image quality and disease complexity. Overall, the loss convergence pattern confirms the effectiveness of the adopted training strategy, preprocessing steps, and regularization techniques in achieving robust multi-class ocular disease classification.

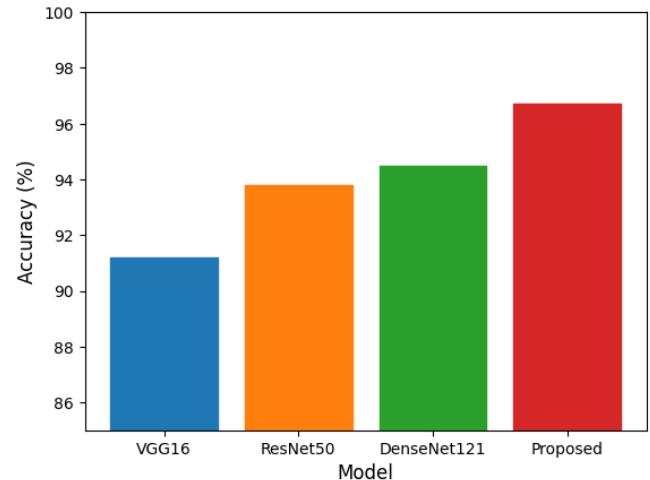


Figure 6: Model Accuracy Comparison

A comparative analysis of classification accuracy achieved by different deep learning models is shown in figure 6. The proposed model demonstrates superior accuracy compared to conventional architectures, highlighting its enhanced capability to learn discriminative retinal features. This improvement can be attributed to the optimized network design and effective feature extraction strategy employed in the proposed framework. The comparison emphasizes the limitations of generic architectures when applied directly to complex medical imaging tasks and underscores the importance of task-specific optimization. The results confirm that the proposed model offers a reliable and accurate solution for automated multi-disease ocular screening.

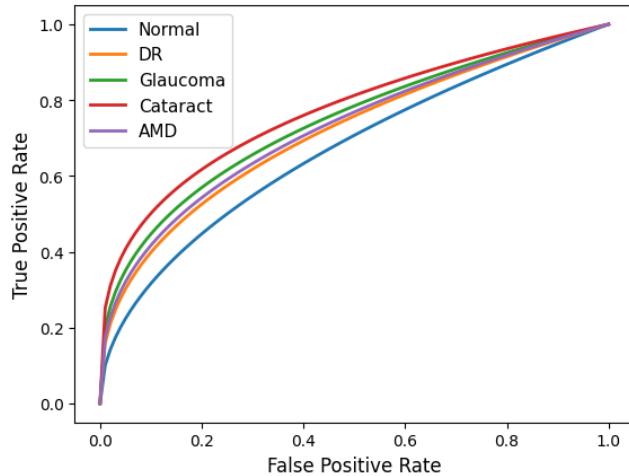


Figure 7: ROC Curves for Multi-Class Eye Disease Classification

The receiver operating characteristic (ROC) curves for different ocular disease classes, providing insight into the discriminative performance of the proposed model is illustrated in figure 7. The ROC curves demonstrate strong separability between classes, indicating high sensitivity and specificity across disease categories. The consistently high area under the curve values reflects the model's ability to distinguish between normal and pathological fundus images, as well as between different disease types. This performance is particularly important in medical diagnostic applications, where reliable differentiation between conditions directly impacts clinical decision-making. The ROC analysis further validates the robustness and clinical applicability of the proposed deep learning framework for multi-class ocular disease detection.

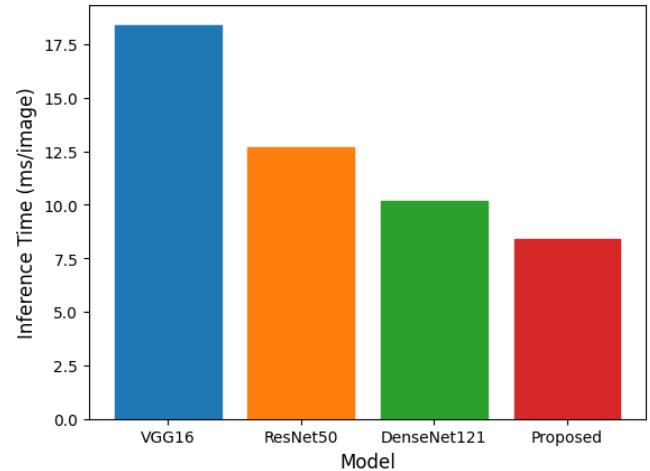


Figure 8: Computational Efficiency Comparison

The computational efficiency comparison among different deep learning models in terms of inference time and overall processing efficiency is shown in figure 8. The results demonstrate that the proposed deep learning model achieves lower inference time compared to conventional architectures while maintaining superior classification performance. This improvement highlights the effectiveness of the optimized network design in reducing computational complexity without compromising accuracy. Efficient inference is a critical requirement for real-time or near-real-time ocular disease screening applications, particularly in large-scale clinical deployments and resource-constrained healthcare environments. The observed efficiency gains indicate that the proposed framework is well-suited for practical implementation, enabling faster diagnosis and improved patient throughput. Overall, the computational efficiency analysis confirms that the proposed model offers a favorable balance between accuracy and execution speed, reinforcing its applicability for real-world automated ocular disease detection systems.

Overall, the experimental results and analyses confirm that the proposed deep learning

framework achieves reliable and consistent performance across multiple ocular disease categories. The model demonstrates strong discriminative capability, stable training behavior, and efficient computational performance, making it suitable for real-world clinical screening applications. The comparative evaluation against existing deep learning models further emphasizes the advantages of the proposed approach in terms of accuracy and generalization. The qualitative and quantitative findings presented in this section validate the effectiveness of the proposed system and provide a strong foundation for its potential deployment in automated ocular disease diagnosis and decision-support systems.

V. CONCLUSION

This paper presented a deep learning-based automated framework for the detection and classification of multiple ocular diseases using retinal fundus images. By leveraging an optimized convolutional neural network architecture and effective preprocessing strategies, the proposed approach enables accurate multi-class classification of normal and pathological retinal conditions, including diabetic retinopathy, glaucoma, cataract, and age-related macular degeneration. Comprehensive experimental evaluations using standard performance metrics demonstrated that the proposed model outperforms conventional deep learning architectures, achieving consistent and reliable performance across all disease categories. The results indicate that the proposed framework has strong potential for use in automated ocular disease screening and clinical decision-support systems, particularly in large-scale and resource-constrained healthcare settings. The ability to detect multiple eye diseases within a unified model can significantly reduce diagnostic workload and improve early detection rates. Although the proposed system shows promising performance,

future work will focus on incorporating larger and more diverse datasets, enhancing model interpretability through explainable AI techniques, and extending the framework to support multi-label classification and real-time deployment in clinical environments.

References

1. Duan, M. M., & Tu, X. (2025). Deep learning-based classification of multiple fundus diseases using ultra-widefield images. *Frontiers in cell and developmental biology*, 13, 1630667. <https://doi.org/10.3389/fcell.2025.1630667>
2. Alsohemi, R., & Dardouri, S. (2025). Fundus Image-Based Eye Disease Detection Using EfficientNetB3 Architecture. *Journal of Imaging*, 11(8), 279. <https://doi.org/10.3390/jimaging11080279>
3. Ouda, O., AbdelMaksoud, E., Abd El-Aziz, A. A., & Elmogy, M. (2022). Multiple Ocular Disease Diagnosis Using Fundus Images Based on Multi-Label Deep Learning Classification. *Electronics*, 11(13), 1966. <https://doi.org/10.3390/electronics11131966>
4. Feudjio Ghislain, Saha Tchinda Beaudelaire, Romain Atangana, Tchiotsop Daniel, An improved deep learning approach for automated detection of multiclass eye diseases, *Array*, Volume 27, 2025, 100452, <https://doi.org/10.1016/j.array.2025.100452>.
5. Dash, S. K., Satyanarayana, K., Behera, S. K., Jena, S., Ratha, A. K., Sethy, P. K., & Nanthaamornphong, A. (2024). Ocular Disease Detection Using Fundus Images: A Hybrid Approach of Grad-CAM and Multiscale Retinex Preprocessing With VGG16 Deep Features and Fine KNN Classification. *Applied Computational Intelligence and Soft Computing*, 2025(1), 6653543. <https://doi.org/10.1155/acis/6653543>

6. Jibon FA, Rabby F, Rahman N, et al. TL-MED: Multiclass eye disease classification based on ensemble transfer learning and CRVO-BRVO detection via a single shot multibox detector. *DIGITAL HEALTH*. 2025;11. doi:10.1177/20552076251379729
7. Li, P., Tao, J., Yuan, Q., Zhang, R., & Gao, P. (2025). Research progress in deep learning-based fundus image analysis for the diagnosis and prediction of hypertension-related diseases. *Frontiers in Cell and Developmental Biology*, 13, 1608994. <https://doi.org/10.3389/fcell.2025.1608994>
8. Vinodhini Velleangiri, Sathiyabhamma Balasubramaniam, Vidhushavarshini Suresh Kumar, Basker Nagarajan, Namitha Govindarajan, Pavitra Panneerselvam, Sakthy Elango Sathya; Multi-label fundus image classification model based on deep learning for multiclass imbalanced ocular disease dataset. *AIP Conf. Proc.* 1 April 2025; 3279 (1): 020076. <https://doi.org/10.1063/5.0262921>
9. Sevik, U., & Mutlu, O. (2025). Automated Multi-Class Classification of Retinal Pathologies: A Deep Learning Approach to Unified Ophthalmic Screening. *Diagnostics* (Basel, Switzerland), 15(21), 2745. <https://doi.org/10.3390/diagnostics15212745>
10. R. Sharma, J. Gangrade, S. Gangrade, A. Mishra, G. Kumar and V. Kumar Gunjan, "Modified EfficientNetB3 Deep Learning Model to Classify Colour Fundus Images of Eye Diseases," 2023 IEEE 5th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), Hamburg, Germany, 2023, pp. 632-638, doi: 10.1109/ICCCMLA58983.2023.10346769.