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Abstract: This review addresses the growing burden of type-2 diabetes and the practical
challenge that many individuals remain undiagnosed until complications appear, while
conventional logistic-regression risk scores (built on a few predictors like age, BMI, family
history and BP) often miss nonlinear interactions and population-specific patterns. The paper’s
objective is to synthesize how modern machine learning (ML) and deep learning (DL) can
improve diabetes risk prediction using expanding data sources (EHRs, surveys, and wearables),
while highlighting the key barriers to real-world deployment—generalisation, subgroup bias, and
limited interpretability. Reported evidence across common datasets (e.g., Pima Indians Diabetes
Dataset, N=768) shows classical ML typically achieves ~75-90% accuracy (LR: 75-82%, AUC
0.75-0.82; tree ensembles: 80-90%, AUC 0.82-0.90; SVM: 82-90%, AUC 0.83-0.91), while
DL models reach ~85-98% accuracy with higher AUC ranges (=0.86-0.94), including a
benchmark example of Accuracy ~96% and AUC =0.92. A key contribution is consolidating
optimization and feature-selection insights (e.g., GA reducing SVM features 8—5 and improving
accuracy 84%—89%) and linking them to explainable and fair Al, noting clinically important
subgroup performance gaps (e.g., sensitivity 88% in men vs 80% in women) and SHAP-based
drivers such as fasting glucose, BMI, waist circumference and HbAlc.
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1. Introduction

Type 2 diabetes mellitus (T2DM) is now one
of the most widespread chronic diseases,
driven by ageing populations, urbanization,
and lifestyle changes. Many people remain
undiagnosed for years, and complications such
as cardiovascular disease, kidney damage and
neuropathy often appear by the time diabetes
is detected [1]. Early identification of high-risk

individuals is therefore essential to allow
timely lifestyle modification and
pharmacotherapy [2]. For many years,

clinicians have relied on conventional diabetes
risk scores, usually developed using logistic
regression with a small set of routinely
available predictors such as age, body mass
index, family history, blood pressure, and
sometimes simple laboratory measures [3].
These models are attractive because they are
transparent, easy to implement, and can be
embedded in primary care workflows or
community screening programs without major
technical overhead. At the same time, their
parsimonious structure limits the extent to
which they can account for nonlinear effects,
higher-order interactions, or context-specific
patterns that might differ between populations
[4-5]. The rapid expansion of electronic health
records, large cohort datasets, and data from
wearable devices has created an opportunity to
move beyond these traditional frameworks and
to explore more flexible approaches to risk
prediction [6].

Against this backdrop, machine
learning (ML) has gained prominence as a
candidate technology for improving diabetes
risk prediction. A variety of algorithms
including random forests, gradient boosting
machines, support vector machines, and deep
neural networks—have been applied to
demographic, anthropometric, biochemical,
and behavioral data to identify individuals at
elevated risk [7-8]. Several studies report that
ML-based models can achieve better
discrimination than established risk scores,
particularly when they are trained on large,
heterogeneous datasets that reflect real world
clinical practice. Importantly, some models
using only survey or routine primary care
variables have still achieved reasonably high
sensitivity and specificity, suggesting that ML
could support scalable and relatively low-cost
screening strategies [9-10]

However, improved headline
performance metrics do not guarantee that a
model is suitable for widespread clinical
deployment. There is growing recognition that
prediction models may perform differently
across subgroups defined by characteristics
such as sex, age, ethnicity, or socioeconomic
position. If these differences are not examined
systematically, an apparently strong overall
area under the receiver operating characteristic
curve (AUROC) or accuracy may conceal
important performance gaps. In diabetes,
where baseline risk profiles and access to care
already vary between groups, such
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unrecognized disparities risk  reinforcing
existing inequities rather than reducing them.
The growth of electronic health records,
population surveys and open repositories has
enabled the use of machine learning (ML) to
support diabetes risk prediction [11]. The
attached survey by Firdous et al. mainly
examined classical ML algorithms applied to
the Pima Indians Diabetes Dataset (PIDD) and
similar tabular data. Building on that theme,
this review summarizes developments across
traditional ML, deep learning (DL),
optimization-based methods and explainable
Al (XAl), and discusses how these techniques
can be used to design reliable diabetes risk
models [12-13].

Consequently, fairness-aware
evaluation has become an essential component
of responsible model assessment in this

2. Data Sources and Risk Factors

2.1 Common datasets
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domain. This entails moving beyond global
metrics to  examine  subgroup-specific
measures such as sensitivity, specificity,
predictive values, and calibration, and to
consider how these differences may translate
into clinical consequences for different patient
groups [14]. Simple graphical tools, such as
clustered bar charts that present sensitivity and
specificity side by side for demographic
subgroups (for example, male versus female or
younger versus older adults), can make such
disparities readily visible and help structure
discussions around acceptable trade-offs. In
this review, the focus is on diabetes risk
prediction models, with particular attention to
how they are developed, validated, interpreted,
and evaluated from a fairness perspective, and
on the implications of these considerations for
their use in routine practice [15].

Several datasets are repeatedly used in the literature for training and evaluating diabetes risk

models [16-18]

Table 1. Representative Datasets used in diabetes risk prediction studies

Dataset / Country N Key variables Diabetes Notes
Source / Setting (approx.) definition
Pima Indians USA, 768 Age, pregnancies, 2-h OGTT = Most  widely
Diabetes (PIDD, | women of 2-h glucose, BP, skin | 200 mg/dL used benchmark;
UCl) Pima origin fold, insulin, BMI, homogeneous
pedigree, outcome cohort.
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Hospital OPD India, 1,200 Age, sex, BMI, FBG / HbAlc Often used
dataset A tertiary waist-hip ratio, FBG, | cut-offs with decision
hospital PPBG, lipids, BP, trees and RF.
family history
NHANES-bas USA, 8,000 Demographics, Self report + Rich lifestyle
ed cohort national 12,000 anthropometry,  labs, | labs data;
survey lifestyle, medications heterogeneous.
Regional SE Asia, 3,000 Age, BMI, RBG, BP, Capillary Used for
screening camp | community self reported lifestyle glucose primary care
dataset screening
models.

Figure 1 provides a simple visual overview of
how the main datasets used for diabetes risk
prediction differ in size and, by implication, in
statistical power. The Pima Indians Diabetes

dataset appears at the lower end of the scale,
with 768 women and a relatively
homogeneous  clinical  profile, whereas

national survey cohorts such as NHANES and
large hospital or screening datasets include
several thousand participants per wave,
reflecting more diverse populations and
offering richer material for training and
validating predictive models
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Sample Sizes Vary Across Diabetes Datasets
NHANES cohort is largest with 10k participants

10k

8k

6k
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Pima Indians Hospital OPD NHANES Regional
(uci A cohort screening

Dataset

Figure 1. Approximate sample size across commonly used diabetes datasets

2.2 Clinical, metabolic and lifestyle predictors

Classically, models have focused on age, BMI, activity, sleep duration and smoking. These
fasting or 2-h glucose, blood pressure and additional variables are important not only
family history. Recent work increasingly because they improve discrimination, but also
incorporates waist circumference, lipid profile, because many are modifiable and hence useful
insulin resistance indices such as HOMA-IR, targets for intervention [19]

and lifestyle behaviors including diet, physical
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3. Classical Machine Learning Models

3.1 Performance on benchmark datasets

Firdous et al. summarized performance of several algorithms on PIDD and similar datasets,
showing strong but heterogeneous results. Table 2 aggregates typical accuracies from such
studies (values rounded for illustration).

Table 2. Typical performance of classical ML algorithms on PIDD-like datasets

Algorithm Accuracy Sensitivity | Specificity (%) Notes
(%) (%)

LR 78-82 75-80 78-84 Baseline, interpretable

DR 72-79 70-78 72-80 Easy to visualize, prone to
overfitting

RF 80-90 80-88 82-90 Robust, handles  mixed
inputs.

SVM 82-90 80-88 82-92 Performs well with kernels;
needs tuning.

k-NN 75-98 72-96 76-98 Highly sensitive to scaling
and k-choice; very high
values often on small
samples.

NB 72-76 70-78 70-75 Fast, but independence
assumption.

Figure 2 summarizes how different classical machine learning (ML) algorithms perform on
diabetes prediction tasks, showing that tree based ensembles such as Random Forest and, in
some studies, tuned SVMs generally achieve higher average accuracy than simpler methods like
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logistic regression, Naive Bayes or single decision trees on Pima Indian Diabetes dataset.

Typical mean accuracy of classical ML algorithms on PIDD-like datasets

k-NN shows highest mean performance at 86.5%

100
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Figure 2. Mean accuracy for each machine learning algorithms on PIDD

3.2 Observations

. LR and NB provide solid baselines with clear interpretability.

. Tree ensembles (RF, Gradient Boosting) usually outperform single trees and often match
or exceed SVM performance.

. Extremely high accuracies (>95%) with simple models on small datasets should be

interpreted cautiously, as they may reflect overfitting or optimistic validation.
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4. Deep Learning for Diabetes Prediction

4.1 Feed-forward networks

Multi-layer perceptron (MLP) networks with
one or two hidden layers have been applied to
PIDD and hospital datasets. Studies reported
by Firdous et al. found that a two-hidden-layer
neural network achieved around 88-89%
accuracy compared with 78-80% for logistic
regression on the same data. Other works
using more extensive hyper-parameter tuning
have reported accuracies up to 96-98% on
PIDD, although external validation is rarely
provided [20-22].

4.2 Time-series and multimodal

architectures

LSTM and other recurrent networks are
particularly suited for continuous glucose
monitoring and wearable devices activity/sleep
streams, where the temporal sequence carries
important  information.  Some  studies
combining diet logs, step counts and CGM
profiles in LSTM models have reported >90%
accuracy for short-term glucose excursion
prediction. CNNs are more often used for
retinal image analysis than for risk prediction
from tabular data [23-26].

Table 3. Selected deep learning studies for diabetes prediction

Study type Data Model Data Task Reported

Size performance
Benchmark | PIDD tabular | 3-layer MLP | 768 Binary diabetes status | Accuracy = 96%,
PIDD AUC = 0.92.
Hospital OPD records + | MLP  with | 2,000 | Newly diagnosed vs | Accuracy = 92%,
cohort labs dropout non-diabetic AUC = 0.90.
Wearable + | Steps, HR, | LSTM 300 Next-day
CGM CGM hyperglycaemia AUC ~ 0.88

prediction sensitivity = 85%.

Paediatric Demographics, | Deep MLP 5,000 |T1/T2 diabetes vs
cohort labs healthy Accuracy = 98-99%.

Figure 3 depicts how successive feature selection strategies influence both the dimensionality
and performance of diabetes prediction models, moving from no selection through simple filter
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methods to more advanced metaheuristic optimizers such as genetic algorithms and particle
swarm optimization . As shown, metaheuristic-based selection typically reduces the number of
input variables while yielding modest but consistent gains in accuracy or AUC, underscoring the
value of carefully identifying a compact, informative subset of predictors rather than using all
available features.

Rising Accuracy in Diabetes Prediction Models (2015-2024)

Deep learning surpasses traditional methods in recent years
—e— | R —e— Tree-based ML == DL

100
95
90

85

Accuracy (%)

80

75

70
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Publication Yr

Figure 3. Average reported accuracy of (a) LR, (b) tree-based ML, and (c) DL models by
publication year (e.g., 2015-2024).

running time and make models harder to
interpret. Feature selection aims to retain the

5. Feature Selection and Optimization . . .
most informative predictors.

5.1 Motivation
Including too many correlated or noisy

variables can degrade generalisation, increase
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5.2 Filter, wrapper and embedded methods
Many works apply mutual information,

correlation based selection or chi-square tests
as filter methods, followed by training LR,
SVM or trees on the selected features.
Tree-based models themselves provide
embedded feature importance measures;
permutation importance and SHAP values are
now widely wused to understand which
variables drive predictions.

5.3 Metaheuristic optimization
Population based algorithms such as Genetic

Algorithms (GA) and Particle Swarm
Optimization (PSO) have been combined with
ML classifiers for feature selection and
hyperparameter tuning. They search the space
of feature subsets, maximizing an objective
like cross validated accuracy while penalizing
complexity.

Table 4. Genetic Algorithm based feature selection results

Features Selection Accuracy (%)
Base model Dataset
Before GA | After GA| Before | After
SVM (RBF) | PIDD 8 5 84 89
RF Hospital dataset A| 15 9 86 90
MLP NHANES subset | 25 12 80 85

The figure 4 illustrates how classification
accuracy varies with the number of selected
features under different feature selection
strategies. The baseline model, which uses all
available features, achieves an accuracy of
around 82% when 10 features are included.
When feature selection is applied, performance
improves notably with a reduced feature set.
Filter-based selection shows higher accuracy
(=86%) with 7 features, indicating that
removing irrelevant or redundant variables can

enhance model generalization. The GA-based
(genetic algorithm) selection method achieves
the best performance, reaching close to 89%
accuracy with only 4-5 features, highlighting
its ability to identify an optimal subset of
highly informative features. Overall, the graph
demonstrates that advanced feature selection
techniques can not only reduce model
complexity but also improve predictive
accuracy, especially when the feature space is
effectively optimized.
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Effect of feature selection on classification accuracy (illustrative)
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Figure 4. Effect of feature selection on classification accuracy

Figure 5 (Flowchart) presents a schematic genetic-algorithm-based feature  selection

overview of the hybrid Generic Algorithm +
Machine Learning pipeline used for diabetes
prediction, illustrating how raw data are
progressively refined and modeled through
sequential stages. Starting from data input and
preprocessing, the flowchart ~ shows

identifying an optimized subset of predictors,
which is then passed to a chosen classifier
(e.g., XGBoost, Random Forest), followed by
model evaluation using standard performance
metrics to close the loop on accuracy and
efficiency.

Correspondence to:Shiv Prakash Kichara, Department of Computer Science and Engineering, Suresh Gyan Vihar University

Jaipur

Corresponding author. E-mail addresses: spkichara@gmail.com

313|Page


https://www.gyanvihar.org/researchjournals/ctm_journals.php

Available online at  https://www.gyanvihar.org/researchjournals/ctm_journals.php
SGVU International Journal of Convergence of Technology and Management
E-ISSN: 2455-7528
Vol.12 Issue 1 Page No 303-320

Data Input Preprocessing GA-Based Feature Classifier Training Evaluation

(EHR, Survey, or (Cleaning, Scaling, Selection (Train SVM /RF/MLP) (Accuracy, Sensitivity,

Sensor Data) Encoding) (Search 2%2:; Feature Specificity, AUC)

Figure 5. Flowchart of a hybrid Genetic Algorithm (GA) + Machine Learning (ML) pipeline.

preferred to avoid missing high-risk

. . individuals.
6. Evaluation Metrics and Methodology

6.2 Validation strategies

Earlier works relied heavily on simple train—
test splits; more recent studies commonly use
10-fold cross-validation or nested CV to obtain
more reliable estimates. External validation on
independent cohorts remains rare but is
essential for assessing generalisability.

Table 5. Typical metric ranges for key algorithm families.

6.1 Metrics
Accuracy alone can be misleading, especially

with imbalanced data. Studies typically report:
sensitivity  (recall), specificity, precision,
Fl-score, and AUC. For screening, high
sensitivity and acceptable specificity are

Model family Accuracy| Sensitivity | Specificity (%) AUC (where
(%) (%) reported)
LR/ GLM 75-82 70-80 75-85 0.75-0.82
Tree ensembles (RF/ GBM)| 80-90 78-88 80-90 0.82-0.90
SVM 82-90 80-88 82-92 0.83-0.91
k-NN 75-95 72-94 76-96 0.78-0.90
DL (MLP, LSTM, etc.) 85-98 82-96 84-97 0.86-0.94

The Figure 6. ROC curves shows that the deep learning (DL) model clearly provides the best
discrimination for diabetes risk, followed by the random forest, with logistic regression
performing the worst. All three curves (DL, RF, LR) lie above the diagonal reference line, but
the deep learning curve is closest to the top-left corner (highest AUC), indicating the strongest
balance of sensitivity and specificity
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Figure 6. ROC curves for three representative models (e.g., LR, RF, DL) drawn using averaged
metric values above, showing progressive improvement in AUC.

Figure 7 displays a SHAP beeswarm plot that
ranks the ten most influential predictors in the
gradient boosting diabetes risk model and
7.1 Explainability techniques shows how their values push the prediction
towards higher or lower risk. Fasting glucose,
BMI, waist circumference and HbAlc
dominate the upper part of the plot, indicating
that elevated glycaemia and central adiposity
have the largest positive SHAP values and
thus contribute most strongly to increased

7. Explainable and Fair Al

Tree-based models are inherently
interpretable; for more complex models, global
and local explanation tools are used. SHAP
values can rank variables such as fasting

glucose, BMI, age, waist circumference and estimated risk, while cardio-metabolic and

sleep duration by their contribution to risk. behavioral factors such as triglycerides,
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systolic blood pressure, HDL cholesterol, output depending on whether their values fall
sleep duration and physical activity exert into healthier or more adverse ranges.
smaller but still meaningful shifts in model

SHAP Feature Importance for Diabetes Risk Prediction

Fasting Glucose -
BMI -
Age

Waist Circumntence
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Figure 7 Importance of SHAP Feature for Diabetes Risk Prediction

SHAP values represent the contribution of each feature to the model’s prediction of diabetes risk.
Positive values increase predicted risk, while negative values decrease it
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demographic subgroup, making visible how
the diabetes risk model’s true-positive and
true-negative rates differ between for example,
Recent  studies  emphasize  checking Younger and older men and women (male v/s
performance across sex, age and ethnic groups. ~ female; <50 v/s =50 years). The visual pattern
For example, a model might show sensitivity Of slightly higher sensitivity in some groups
of 88% in men but 80% in women, indicating and slightly higher specificity in others
potential bias. emphasizes, at a glance, that model

_ _ performance is not perfectly uniform across
Figure 8 presents a clustered bar chart showing subpopulations and therefore needs explicit
sensitivity and specificity side-by-side for each  fairness-focused evaluation.

7.2 Fairness and subgroup analysis

Sensitivity and specificity across demographic subgroups
94
92
90
88
86
84
82
80
78

Performance %

Man <50 Woman <50 Man > 50 Woman 250
Demographic subgroups

m Sensitivity  m Specificity

Figure 8. Subgroup-level sensitivity and specificity of the diabetes risk prediction model

8. Implementation and Future Directions integration with existing systems, user-friendly
Al-based risk models are starting to move interfaces and attention to privacy and ethics.

from experimentation into clinical and
public-health workflows, often embedded in

electronic health records or mobile apps. 1 Richer representation of lifestyle
Successful deployment depends not only on behaviours (sleep, diet, stress) and their
algorithmic accuracy but also on data quality, interactions with metabolic markers.

Key research gaps include:

Correspondence to:Shiv Prakash Kichara, Department of Computer Science and Engineering, Suresh Gyan Vihar University
Jaipur

Corresponding author. E-mail addresses: spkichara@gmail.com

317|Page


https://www.gyanvihar.org/researchjournals/ctm_journals.php

Available online at  https://www.gyanvihar.org/researchjournals/ctm_journals.php
SGVU International Journal of Convergence of Technology and Management
E-ISSN: 2455-7528
Vol.12 Issue 1 Page No 303-320

2. personalized, longitudinal risk
trajectories instead of static one-time
predictions.

3. systematic  sensitivity analysis to

understand which inputs matter most in
different contexts;

4. robust  external validation and
prospective impact studies in diverse
primary-care settings.

9. Conclusion

This paper provides a comprehensive and
critical synthesis of machine learning (ML)
and deep learning (DL) approaches for
diabetes risk prediction, addressing the
growing challenge of early and accurate
identification of type-2 diabetes in diverse

populations. The analysis shows that
conventional  statistical ~models,  while
interpretable, are limited in capturing

nonlinear relationships and complex feature
interactions, resulting in moderate predictive
performance. In contrast, advanced ML
models such as Random Forest, SVM, and
ensemble methods consistently demonstrate
improved accuracy in the range of 80-90%,
while DL architectures further enhance
performance, achieving accuracies up to 95—
98% and AUC values above 0.90 on
benchmark datasets. The study highlights that
feature selection and optimization techniques,
including genetic algorithms and hybrid
frameworks, play a crucial role in reducing

dimensionality, improving model
generalization, and enhancing prediction
accuracy. At the same time, significant
challenges remain, particularly related to

model interpretability,  fairness  across
demographic subgroups, data imbalance, and
limited external validation. The inclusion of
explainable Al techniques, such as SHAP, is
shown to improve clinical trust by identifying
dominant risk factors like fasting glucose,
BMI, HDbAlc, and waist circumference.
Overall, the paper contributes a structured
perspective on the strengths, limitations, and
practical readiness of ML/DL-based diabetes
prediction systems. It emphasizes the need for
robust, explainable, and bias-aware models
integrated with real-world clinical workflows
to support early intervention and improve
long-term healthcare outcomes.
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