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Abstract: This review addresses the growing burden of type-2 diabetes and the practical 

challenge that many individuals remain undiagnosed until complications appear, while 

conventional logistic-regression risk scores (built on a few predictors like age, BMI, family 

history and BP) often miss nonlinear interactions and population-specific patterns.  The paper’s 

objective is to synthesize how modern machine learning (ML) and deep learning (DL) can 

improve diabetes risk prediction using expanding data sources (EHRs, surveys, and wearables), 

while highlighting the key barriers to real-world deployment—generalisation, subgroup bias, and 

limited interpretability. Reported evidence across common datasets (e.g., Pima Indians Diabetes 

Dataset, N=768) shows classical ML typically achieves ~75–90% accuracy (LR: 75–82%, AUC 

0.75–0.82; tree ensembles: 80–90%, AUC 0.82–0.90; SVM: 82–90%, AUC 0.83–0.91), while 

DL models reach ~85–98% accuracy with higher AUC ranges (≈0.86–0.94), including a 

benchmark example of Accuracy ≈96% and AUC ≈0.92. A key contribution is consolidating 

optimization and feature-selection insights (e.g., GA reducing SVM features 8→5 and improving 

accuracy 84%→89%) and linking them to explainable and fair AI, noting clinically important 

subgroup performance gaps (e.g., sensitivity 88% in men vs 80% in women) and SHAP-based 

drivers such as fasting glucose, BMI, waist circumference and HbA1c. 
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1. Introduction  

 

Type 2 diabetes mellitus (T2DM) is now one 

of the most widespread chronic diseases, 

driven by ageing populations, urbanization, 

and lifestyle changes. Many people remain 

undiagnosed for years, and complications such 

as cardiovascular disease, kidney damage and 

neuropathy often appear by the time diabetes 

is detected [1]. Early identification of high-risk 

individuals is therefore essential to allow 

timely lifestyle modification and 

pharmacotherapy [2]. For many years, 

clinicians have relied on conventional diabetes 

risk scores, usually developed using logistic 

regression with a small set of routinely 

available predictors such as age, body mass 

index, family history, blood pressure, and 

sometimes simple laboratory measures [3]. 

These models are attractive because they are 

transparent, easy to implement, and can be 

embedded in primary care workflows or 

community screening programs without major 

technical overhead. At the same time, their 

parsimonious structure limits the extent to 

which they can account for nonlinear effects, 

higher‑order interactions, or context‑specific 

patterns that might differ between populations 

[4-5]. The rapid expansion of electronic health 

records, large cohort datasets, and data from 

wearable devices has created an opportunity to 

move beyond these traditional frameworks and 

to explore more flexible approaches to risk 

prediction [6].  

Against this backdrop, machine 

learning (ML) has gained prominence as a 

candidate technology for improving diabetes 

risk prediction. A variety of algorithms 

including random forests, gradient boosting 

machines, support vector machines, and deep 

neural networks—have been applied to 

demographic, anthropometric, biochemical, 

and behavioral data to identify individuals at 

elevated risk [7-8]. Several studies report that 

ML-based models can achieve better 

discrimination than established risk scores, 

particularly when they are trained on large, 

heterogeneous datasets that reflect real world 

clinical practice. Importantly, some models 

using only survey or routine primary care 

variables have still achieved reasonably high 

sensitivity and specificity, suggesting that ML 

could support scalable and relatively low‑cost 

screening strategies [9-10] 

However, improved headline 

performance metrics do not guarantee that a 

model is suitable for widespread clinical 

deployment. There is growing recognition that 

prediction models may perform differently 

across subgroups defined by characteristics 

such as sex, age, ethnicity, or socioeconomic 

position. If these differences are not examined 

systematically, an apparently strong overall 

area under the receiver operating characteristic 

curve (AUROC) or accuracy may conceal 

important performance gaps. In diabetes, 

where baseline risk profiles and access to care 

already vary between groups, such 
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unrecognized disparities risk reinforcing 

existing inequities rather than reducing them. 

The growth of electronic health records, 

population surveys and open repositories has 

enabled the use of machine learning (ML) to 

support diabetes risk prediction [11]. The 

attached survey by Firdous et al. mainly 

examined classical ML algorithms applied to 

the Pima Indians Diabetes Dataset (PIDD) and 

similar tabular data. Building on that theme, 

this review summarizes developments across 

traditional ML, deep learning (DL), 

optimization-based methods and explainable 

AI (XAI), and discusses how these techniques 

can be used to design reliable diabetes risk 

models [12-13]. 

Consequently, fairness‑aware 

evaluation has become an essential component 

of responsible model assessment in this 

domain. This entails moving beyond global 

metrics to examine subgroup‑specific 

measures such as sensitivity, specificity, 

predictive values, and calibration, and to 

consider how these differences may translate 

into clinical consequences for different patient 

groups [14]. Simple graphical tools, such as 

clustered bar charts that present sensitivity and 

specificity side by side for demographic 

subgroups (for example, male versus female or 

younger versus older adults), can make such 

disparities readily visible and help structure 

discussions around acceptable trade‑offs. In 

this review, the focus is on diabetes risk 

prediction models, with particular attention to 

how they are developed, validated, interpreted, 

and evaluated from a fairness perspective, and 

on the implications of these considerations for 

their use in routine practice [15]. 

2. Data Sources and Risk Factors 

2.1 Common datasets 

Several datasets are repeatedly used in the literature for training and evaluating diabetes risk 

models [16-18] 

Table 1. Representative Datasets used in diabetes risk prediction studies 

Dataset / 

Source 

Country 

/ Setting 

N 

(approx.) 

Key variables Diabetes 

definition 

Notes 

Pima Indians 

Diabetes (PIDD, 

UCI) 

USA, 

women of 

Pima origin 

768 Age, pregnancies, 

2-h glucose, BP, skin 

fold, insulin, BMI, 

pedigree, outcome 

2-h OGTT ≥ 

200 mg/dL 

Most widely 

used benchmark; 

homogeneous 

cohort. 
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Hospital OPD 

dataset A 

India, 

tertiary 

hospital 

1,200 Age, sex, BMI, 

waist-hip ratio, FBG, 

PPBG, lipids, BP, 

family history 

FBG / HbA1c 

cut-offs 

Often used 

with decision 

trees and RF. 

NHANES-bas

ed cohort 

USA, 

national 

survey 

8,000–

12,000 

Demographics, 

anthropometry, labs, 

lifestyle, medications 

Self report + 

labs 

Rich lifestyle 

data; 

heterogeneous. 

Regional 

screening camp 

dataset 

SE Asia, 

community 

3,000 Age, BMI, RBG, BP, 

self reported lifestyle 

Capillary 

glucose 

Used for 

primary care 

screening 

models. 

 

Figure 1 provides a simple visual overview of 

how the main datasets used for diabetes risk 

prediction differ in size and, by implication, in 

statistical power. The Pima Indians Diabetes 

dataset appears at the lower end of the scale, 

with 768 women and a relatively 

homogeneous clinical profile, whereas 

national survey cohorts such as NHANES and 

large hospital or screening datasets include 

several thousand participants per wave, 

reflecting more diverse populations and 

offering richer material for training and 

validating predictive models 

https://www.gyanvihar.org/researchjournals/ctm_journals.php
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Figure 1. Approximate sample size across commonly used diabetes datasets 

 

2.2 Clinical, metabolic and lifestyle predictors 

 

Classically, models have focused on age, BMI, 

fasting or 2‑h glucose, blood pressure and 

family history. Recent work increasingly 

incorporates waist circumference, lipid profile, 

insulin resistance indices such as HOMA‑IR, 

and lifestyle behaviors including diet, physical 

activity, sleep duration and smoking. These 

additional variables are important not only 

because they improve discrimination, but also 

because many are modifiable and hence useful 

targets for intervention [19] 
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3. Classical Machine Learning Models 

3.1 Performance on benchmark datasets 

 

Firdous et al. summarized performance of several algorithms on PIDD and similar datasets, 

showing strong but heterogeneous results. Table 2 aggregates typical accuracies from such 

studies (values rounded for illustration). 

Table 2. Typical performance of classical ML algorithms on PIDD‑like datasets 

Algorithm Accuracy 

(%) 

Sensitivity 

(%) 

Specificity (%) Notes 

LR 78–82 75–80 78–84 Baseline, interpretable 

DR 72–79 70–78 72–80 Easy to visualize, prone to 

overfitting 

RF 80–90 80–88 82–90 Robust, handles mixed 

inputs. 

SVM 82–90 80–88 82–92 Performs well with kernels; 

needs tuning. 

k-NN 75–98 72–96 76–98 Highly sensitive to scaling 

and k-choice; very high 

values often on small 

samples.  

NB 72–76 70–78 70–75 Fast, but independence 

assumption.  

 

Figure 2 summarizes how different classical machine learning (ML) algorithms perform on 

diabetes prediction tasks, showing that tree based ensembles such as Random Forest and, in 

some studies, tuned SVMs generally achieve higher average accuracy than simpler methods like 

https://www.gyanvihar.org/researchjournals/ctm_journals.php
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logistic regression, Naive Bayes or single decision trees on Pima Indian Diabetes dataset. 

 

Figure 2. Mean accuracy for each machine learning algorithms on PIDD 

3.2 Observations 

• LR and NB provide solid baselines with clear interpretability. 

• Tree ensembles (RF, Gradient Boosting) usually outperform single trees and often match 

or exceed SVM performance. 

• Extremely high accuracies (≥95%) with simple models on small datasets should be 

interpreted cautiously, as they may reflect overfitting or optimistic validation. 
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4. Deep Learning for Diabetes Prediction 

4.1 Feed‑forward networks 

 

Multi‑layer perceptron (MLP) networks with 

one or two hidden layers have been applied to 

PIDD and hospital datasets. Studies reported 

by Firdous et al. found that a two‑hidden‑layer 

neural network achieved around 88–89% 

accuracy compared with 78–80% for logistic 

regression on the same data. Other works 

using more extensive hyper-parameter tuning 

have reported accuracies up to 96–98% on 

PIDD, although external validation is rarely 

provided [20-22]. 

4.2 Time-series and multimodal 

architectures 

 

LSTM and other recurrent networks are 

particularly suited for continuous glucose 

monitoring and wearable devices activity/sleep 

streams, where the temporal sequence carries 

important information. Some studies 

combining diet logs, step counts and CGM 

profiles in LSTM models have reported >90% 

accuracy for short-term glucose excursion 

prediction. CNNs are more often used for 

retinal image analysis than for risk prediction 

from tabular data [23-26]. 

Table 3. Selected deep learning studies for diabetes prediction 

Study type Data Model Data 

Size 

Task Reported 

performance 

Benchmark 

PIDD 

PIDD tabular 3-layer MLP 768 Binary diabetes status Accuracy ≈ 96%,  

AUC ≈ 0.92. 

Hospital 

cohort 

OPD records + 

labs 

MLP with 

dropout 

2,000 Newly diagnosed vs 

non-diabetic 

Accuracy ≈ 92%, 

AUC ≈ 0.90. 

Wearable + 

CGM 

Steps, HR, 

CGM 

LSTM 300 Next-day 

hyperglycaemia 

prediction 
AUC ≈ 0.88, 

sensitivity ≈ 85%. 

Paediatric 

cohort 

Demographics, 

labs 

Deep MLP 5,000 T1/T2 diabetes vs 

healthy Accuracy ≈ 98–99%. 

 

Figure 3 depicts how successive feature selection strategies influence both the dimensionality 

and performance of diabetes prediction models, moving from no selection through simple filter 

https://www.gyanvihar.org/researchjournals/ctm_journals.php
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methods to more advanced metaheuristic optimizers such as genetic algorithms and particle 

swarm optimization    . As shown, metaheuristic‑based selection typically reduces the number of 

input variables while yielding modest but consistent gains in accuracy or AUC, underscoring the 

value of carefully identifying a compact, informative subset of predictors rather than using all 

available features. 

 

Figure 3. Average reported accuracy of (a) LR, (b) tree‑based ML, and (c) DL models by 

publication year (e.g., 2015–2024). 

5. Feature Selection and Optimization 

5.1 Motivation 

Including too many correlated or noisy 

variables can degrade generalisation, increase 

running time and make models harder to 

interpret. Feature selection aims to retain the 

most informative predictors. 

https://www.gyanvihar.org/researchjournals/ctm_journals.php
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5.2 Filter, wrapper and embedded methods 

Many works apply mutual information, 

correlation based selection or chi-square tests 

as filter methods, followed by training LR, 

SVM or trees on the selected features. 

Tree‑based models themselves provide 

embedded feature importance measures; 

permutation importance and SHAP values are 

now widely used to understand which 

variables drive predictions. 

5.3 Metaheuristic optimization 

Population based algorithms such as Genetic 

Algorithms (GA) and Particle Swarm 

Optimization (PSO) have been combined with 

ML classifiers for feature selection and 

hyperparameter tuning. They search the space 

of feature subsets, maximizing an objective 

like cross validated accuracy while penalizing 

complexity.  

Table 4. Genetic Algorithm based feature selection results 

Base model Dataset 
Features Selection Accuracy (%) 

Before GA After GA Before After 

SVM (RBF) PIDD 8 5 84 89 

RF Hospital dataset A 15 9 86 90 

MLP NHANES subset 25 12 80 85 

 

The figure 4 illustrates how classification 

accuracy varies with the number of selected 

features under different feature selection 

strategies. The baseline model, which uses all 

available features, achieves an accuracy of 

around 82% when 10 features are included. 

When feature selection is applied, performance 

improves notably with a reduced feature set. 

Filter-based selection shows higher accuracy 

(≈86%) with 7 features, indicating that 

removing irrelevant or redundant variables can 

enhance model generalization. The GA-based 

(genetic algorithm) selection method achieves 

the best performance, reaching close to 89% 

accuracy with only 4–5 features, highlighting 

its ability to identify an optimal subset of 

highly informative features. Overall, the graph 

demonstrates that advanced feature selection 

techniques can not only reduce model 

complexity but also improve predictive 

accuracy, especially when the feature space is 

effectively optimized. 

https://www.gyanvihar.org/researchjournals/ctm_journals.php
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Figure 4. Effect of feature selection on classification accuracy 

Figure 5 (Flowchart) presents a schematic 

overview of the hybrid Generic Algorithm + 

Machine Learning pipeline used for diabetes 

prediction, illustrating how raw data are 

progressively refined and modeled through 

sequential stages. Starting from data input and 

preprocessing, the flowchart shows 

genetic‑algorithm‑based feature selection 

identifying an optimized subset of predictors, 

which is then passed to a chosen classifier 

(e.g., XGBoost, Random Forest), followed by 

model evaluation using standard performance 

metrics to close the loop on accuracy and 

efficiency. 
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Figure 5. Flowchart of a hybrid Genetic Algorithm (GA) + Machine Learning (ML) pipeline. 

6. Evaluation Metrics and Methodology 

6.1 Metrics 

Accuracy alone can be misleading, especially 

with imbalanced data. Studies typically report: 

sensitivity (recall), specificity, precision, 

F1‑score, and AUC. For screening, high 

sensitivity and acceptable specificity are 

preferred to avoid missing high-risk 

individuals. 

6.2 Validation strategies 

Earlier works relied heavily on simple train–

test splits; more recent studies commonly use 

10‑fold cross-validation or nested CV to obtain 

more reliable estimates. External validation on 

independent cohorts remains rare but is 

essential for assessing generalisability. 

Table 5. Typical metric ranges for key algorithm families. 

Model family Accuracy 

(%) 

Sensitivity 

(%) 

Specificity (%) AUC (where 

reported) 

LR / GLM 75–82 70–80 75–85 0.75–0.82 

Tree ensembles (RF / GBM) 80–90 78–88 80–90 0.82–0.90 

SVM 82–90 80–88 82–92 0.83–0.91 

k-NN 75–95 72–94 76–96 0.78–0.90 

DL (MLP, LSTM, etc.) 85–98 82–96 84–97 0.86–0.94 

 

The Figure 6. ROC curves shows that the deep learning (DL) model clearly provides the best 

discrimination for diabetes risk, followed by the random forest, with logistic regression 

performing the worst. All three curves (DL, RF, LR) lie above the diagonal reference line, but 

the deep learning curve is closest to the top‑left corner (highest AUC), indicating the strongest 

balance of sensitivity and specificity 

https://www.gyanvihar.org/researchjournals/ctm_journals.php
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Figure 6. ROC curves for three representative models (e.g., LR, RF, DL) drawn using averaged 

metric values above, showing progressive improvement in AUC. 

7. Explainable and Fair AI 

7.1 Explainability techniques 

 

Tree‑based models are inherently 

interpretable; for more complex models, global 

and local explanation tools are used. SHAP 

values can rank variables such as fasting 

glucose, BMI, age, waist circumference and 

sleep duration by their contribution to risk. 

Figure 7 displays a SHAP beeswarm plot that 

ranks the ten most influential predictors in the 

gradient boosting diabetes risk model and 

shows how their values push the prediction 

towards higher or lower risk. Fasting glucose, 

BMI, waist circumference and HbA1c 

dominate the upper part of the plot, indicating 

that elevated glycaemia and central adiposity 

have the largest positive SHAP values and 

thus contribute most strongly to increased 

estimated risk, while cardio-metabolic and 

behavioral factors such as triglycerides, 

https://www.gyanvihar.org/researchjournals/ctm_journals.php
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systolic blood pressure, HDL cholesterol, 

sleep duration and physical activity exert 

smaller but still meaningful shifts in model 

output depending on whether their values fall 

into healthier or more adverse ranges. 

 

Figure 7 Importance of SHAP Feature for Diabetes Risk Prediction 

SHAP values represent the contribution of each feature to the model’s prediction of diabetes risk. 

Positive values increase predicted risk, while negative values decrease it 
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7.2 Fairness and subgroup analysis 

 

Recent studies emphasize checking 

performance across sex, age and ethnic groups. 

For example, a model might show sensitivity 

of 88% in men but 80% in women, indicating 

potential bias. 

Figure 8 presents a clustered bar chart showing 

sensitivity and specificity side‑by‑side for each 

demographic subgroup, making visible how 

the diabetes risk model’s true‑positive and 

true‑negative rates differ between for example, 

younger and older men and women (male v/s 

female; <50 v/s ≥50 years). The visual pattern 

of slightly higher sensitivity in some groups 

and slightly higher specificity in others 

emphasizes, at a glance, that model 

performance is not perfectly uniform across 

subpopulations and therefore needs explicit 

fairness-focused evaluation. 

 

Figure 8. Subgroup-level sensitivity and specificity of the diabetes risk prediction model 

8. Implementation and Future Directions 

AI‑based risk models are starting to move 

from experimentation into clinical and 

public‑health workflows, often embedded in 

electronic health records or mobile apps. 

Successful deployment depends not only on 

algorithmic accuracy but also on data quality, 

integration with existing systems, user‑friendly 

interfaces and attention to privacy and ethics. 

Key research gaps include: 

1. Richer representation of lifestyle 

behaviours (sleep, diet, stress) and their 

interactions with metabolic markers. 
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2. personalized, longitudinal risk 

trajectories instead of static one‑time 

predictions. 

3. systematic sensitivity analysis to 

understand which inputs matter most in 

different contexts; 

4. robust external validation and 

prospective impact studies in diverse 

primary‑care settings. 

 

 9. Conclusion 

This paper provides a comprehensive and 

critical synthesis of machine learning (ML) 

and deep learning (DL) approaches for 

diabetes risk prediction, addressing the 

growing challenge of early and accurate 

identification of type-2 diabetes in diverse 

populations. The analysis shows that 

conventional statistical models, while 

interpretable, are limited in capturing 

nonlinear relationships and complex feature 

interactions, resulting in moderate predictive 

performance. In contrast, advanced ML 

models such as Random Forest, SVM, and 

ensemble methods consistently demonstrate 

improved accuracy in the range of 80–90%, 

while DL architectures further enhance 

performance, achieving accuracies up to 95–

98% and AUC values above 0.90 on 

benchmark datasets. The study highlights that 

feature selection and optimization techniques, 

including genetic algorithms and hybrid 

frameworks, play a crucial role in reducing 

dimensionality, improving model 

generalization, and enhancing prediction 

accuracy. At the same time, significant 

challenges remain, particularly related to 

model interpretability, fairness across 

demographic subgroups, data imbalance, and 

limited external validation. The inclusion of 

explainable AI techniques, such as SHAP, is 

shown to improve clinical trust by identifying 

dominant risk factors like fasting glucose, 

BMI, HbA1c, and waist circumference. 

Overall, the paper contributes a structured 

perspective on the strengths, limitations, and 

practical readiness of ML/DL-based diabetes 

prediction systems. It emphasizes the need for 

robust, explainable, and bias-aware models 

integrated with real-world clinical workflows 

to support early intervention and improve 

long-term healthcare outcomes. 
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