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Abstract: Battery degradation caused by electro-thermal and mechanical stress remains a critical challenge in 

achieving safe, efficient, and long-lasting energy storage systems. This paper presents a Transformer-based 

Reinforcement Learning (Transformer-RL) adaptive control framework for minimizing battery stress during 

dynamic charging environments. The proposed system integrates predictive modeling and attention-driven 

temporal learning with real-time control optimization to achieve health-aware charging regulation. The 

framework first derives a composite Stress Index (SI) from temperature variation, internal resistance growth, 

and State of Health (SoH) degradation. This index serves as a real-time feedback signal guiding the RL agent 

to select optimal charging actions. The Transformer encoder captures long-term temporal correlations among 

electrochemical parameters, while the Actor–Critic reinforcement structure continuously optimizes charging 

current through a multi-objective reward function balancing SoC (State of Charge), rise rate, thermal stability, 

and stress minimization. Experimental evaluation demonstrates that the proposed Transformer-Adaptive 

controller reduces overall battery stress by 36.3%, limits temperature rise to below 40 °C, and improves SoH 

retention to 96.4% compared with conventional CC–CV and LSTM-based models. Furthermore, convergence 

analysis shows stable policy learning and superior performance trade-offs in charging speed versus stress 

reduction. The results confirm that integrating deep temporal modeling with reinforcement intelligence can 

transform traditional battery management into a self-optimizing, health-aware, and stress-resilient system, 

offering significant potential for electric vehicles and smart grid energy storage applications. 

 

Keywords: Battery Stress Reduction, Transformer-RL, Adaptive Charging Control, Electro-Thermal 

Management, Smart Battery Systems 

 

1. Introduction 

With the rapid electrification of 

transportation and the growing reliance on 

renewable energy storage, lithium-ion batteries 

(LiBs) have become the cornerstone of modern 

energy systems [1]. However, despite their high 

energy density and efficiency, LiBs are inherently 

sensitive to electro-thermal stress arising during fast 

or irregular charging conditions. Such stress 

manifested through excessive temperature rise, 

internal resistance growth, and accelerated 
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degradation directly compromises battery life, 

safety, and reliability [2]. The challenge of reducing 

battery stress while maintaining efficient charging 

performance remains one of the most critical 

bottlenecks in the advancement of smart battery 

management systems (BMS). 

 

Traditional charging strategies, such as 

Constant Current–Constant Voltage (CC–CV) and 

rule-based controllers, operate under fixed control 

logic, which lacks adaptability to real-time 

variations in temperature, SoC, and SoH. While 

these methods are simple and predictable, they often 

induce non-uniform charge distribution and thermal 

overshoot, leading to long-term degradation. To 

address these issues, data-driven and learning-based 

control strategies have emerged as promising 

alternatives [3]. Recent studies employing machine 

learning (ML) and deep learning (DL) models such 

as LSTM, GRU, and hybrid neural networks have 

shown success in predicting battery behavior and 

optimizing charging parameters [4]. However, most 

of these methods focus primarily on speed and 

efficiency, with limited consideration for 

electrochemical stress and degradation coupling 

under dynamic operational conditions. 

 

In response to these limitations, this study 

proposes a ML-Based Adaptive Control Framework 

that focuses on real-time stress reduction during 

battery charging and discharging processes. The 

proposed system introduces a novel Transformer-

Reinforcement Learning (Transformer-RL) model 

that combines attention-driven temporal feature 

extraction with adaptive control intelligence [5]. 

Unlike recurrent networks that rely on short-term 

dependencies, the Transformer architecture captures 

long-range temporal patterns in sequential battery 

data, enabling it to anticipate stress accumulation 

trends before they manifest. This predictive 

capability allows the control agent to make 

proactive decisions adjusting current flow 

dynamically to maintain both thermal stability and 

structural integrity of the cell. 

 

A key innovation in this work is the 

introduction of a composite Stress Index (SI) that 

quantifies electro-thermal and mechanical stress in 

real time by integrating temperature deviation, 

internal resistance growth, and health degradation 

indicators. This metric forms the core feedback 

signal for the RL agent, guiding the optimization 

process through a multi-objective reward 

formulation that jointly considers charging speed, 

thermal safety, and degradation control. The 

resulting Transformer-RL controller continuously 

learns to minimize stress energy while preserving 

energy throughput and efficiency. 

 

Through extensive simulation and 

comparative evaluation, the proposed model 

demonstrates significant improvements over 

conventional CC–CV, rule-based, and LSTM-

adaptive systems. The Transformer-Adaptive 

Controller achieves up to 36% stress reduction, 

40°C peak temperature control, and 96.4% SoH 

retention, all while maintaining fast and efficient 

charging profiles. These outcomes highlight the 

potential of integrating Transformer-based temporal 

learning with reinforcement-driven decision-

making to build next-generation self-optimizing, 

stress-aware battery management systems. The 

proposed framework establishes a critical link 

between machine learning, control optimization, 

and energy system resilience—paving the way for 

sustainable applications in electric mobility, 

renewable integration, and grid-scale energy 

storage. 

 

2. Literature Review 

Battery stress mitigation has emerged as a 

critical area of research due to the increasing 

demand for high-performance and long-lifespan 

lithium-ion batteries in electric vehicles, consumer 

electronics, and renewable energy systems. Over the 
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past decade, researchers have explored multiple 

modeling and control strategies aimed at improving 

charging efficiency, thermal stability, and 

degradation resistance. These approaches can be 

broadly classified into physics-based models, rule-

based or model predictive control (MPC) methods, 

and ML–driven adaptive systems [6]. Each class 

contributes uniquely to understanding and 

managing electrochemical stress, but each also 

carries specific limitations that have motivated the 

shift toward intelligent, data-driven control 

frameworks. 

 

Early studies on battery stress reduction 

primarily relied on electrochemical and thermal 

models to simulate the physical processes governing 

temperature rise, lithium plating, and resistance 

growth. These models provided detailed insights 

into internal degradation mechanisms but required 

extensive parameterization, making them unsuitable 

for real-time applications [7]. Furthermore, their 

predictive accuracy deteriorated under dynamic 

operational conditions such as variable current loads 

or fluctuating ambient temperatures, limiting their 

adaptability to modern fast-charging environments. 

As a result, researchers began incorporating 

feedback-based control mechanisms to maintain 

operational safety while improving charging speed. 

 

Rule-based and Model Predictive Control 

(MPC) strategies represented a significant 

advancement over static models. By integrating 

sensor feedback, these methods enabled on-line 

monitoring of parameters like temperature and 

voltage, allowing predefined corrective actions 

when thresholds were exceeded. Although MPC 

frameworks introduced optimization principles, 

their performance was heavily dependent on the 

accuracy of mathematical models and pre-set 

constraints [8]. They lacked the ability to learn or 

adapt to new conditions over time, and thus 

struggled to generalize across different battery 

chemistries and usage patterns. The inability of rule-

based systems to handle the nonlinear coupling 

between electrochemical stress and thermal 

dynamics further limited their effectiveness in real-

world environments. 

 

To overcome these challenges, recent 

research has shifted toward data-driven machine 

learning and deep learning techniques. ML-based 

methods have demonstrated strong predictive 

capabilities for estimating battery states such as 

SoC, SoH, and internal resistance, which are 

essential for identifying stress trends. Algorithms 

such as Support Vector Machines (SVM), Random 

Forests (RF), and Gradient Boosting have shown 

promise in modeling nonlinear relationships 

between measurable parameters and hidden 

degradation states [9]. However, these conventional 

ML methods depend heavily on manual feature 

engineering and are limited in their ability to capture 

long-term temporal dependencies inherent in battery 

degradation processes. 

 

The introduction of Recurrent Neural 

Networks (RNNs) and their variants such as LSTM 

(Long Short-Term Memory) and GRU (Gated 

Recurrent Unit) addressed some of these challenges 

by effectively modeling time-series dependencies. 

These architectures enabled more accurate 

prediction of temperature evolution, resistance rise, 

and capacity fade over time [10]. Nonetheless, 

RNN-based models often face issues related to 

vanishing gradients and high computational costs, 

especially when applied to long operational histories 

or multi-dimensional feature spaces. Moreover, 

while these models can predict stress-related states, 

they typically do not possess active control 

capabilities—they describe what will happen, but 

not how to intervene dynamically to prevent stress 

buildup. 

 

Recent advancements in deep RL have 

opened new avenues for adaptive control and 

decision-making in battery management systems. 
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RL algorithms allow agents to learn optimal 

charging strategies through interaction with the 

environment, balancing short-term gains (charging 

speed) and long-term rewards (battery health 

preservation) [11]. However, most existing RL-

based approaches use simple feedforward or 

recurrent networks as policy approximators, which 

limits their capacity to interpret complex time-

dependent relationships across multiple variables. 

Additionally, few studies explicitly integrate stress-

oriented feedback mechanisms into the RL reward 

formulation, leading to suboptimal health-aware 

control performance. 

 

The emergence of Transformer architectures 

has introduced a new paradigm for sequence 

modeling in energy systems. By leveraging multi-

head self-attention mechanisms, Transformers can 

capture long-range temporal dependencies without 

the recurrence overhead of LSTMs [12]. When 

combined with reinforcement learning, they can 

provide a powerful hybrid solution capable of both 

temporal pattern understanding and adaptive policy 

optimization. This integration enables controllers to 

anticipate and respond to battery stress patterns 

dynamically, achieving both operational efficiency 

and health preservation. 

 

Despite these promising developments, 

there remains a notable research gap in designing an 

integrated, stress-aware adaptive control framework 

that unites predictive modeling, reinforcement 

optimization, and temporal intelligence. Existing 

models often focus solely on improving charging 

performance or minimizing degradation 

independently, without a unified mechanism to 

balance both objectives in real time. Moreover, the 

explicit quantification of battery stress as a control 

feedback variable is still underexplored, even 

though it directly governs degradation mechanisms 

such as lithium plating, electrolyte decomposition, 

and SEI layer formation. 

 

In view of these limitations, this study 

introduces a Transformer-RL–based Adaptive 

Control Framework that actively minimizes electro-

thermal stress during charging while maintaining 

efficiency and safety. By defining a composite 

Stress Index (SI) and embedding it into the RL 

reward function, the proposed system enables 

continuous self-learning and control adaptation 

under varying operating conditions. This hybrid 

methodology bridges the gap between battery 

modeling, predictive learning, and intelligent 

control, offering a scalable and generalizable 

solution for next-generation smart energy storage 

systems and electric vehicle battery management. 

 

3. Methodology 

The proposed methodology introduces an 

adaptive control framework that dynamically 

minimizes battery stress during charging and 

discharging operations through a synergistic 

combination of predictive modeling, RL, and 

Transformer-based temporal encoding. The system 

builds upon previously developed modules for 

battery state prediction and charging optimization, 

extending them toward stress-aware real-time 

decision-making. The overall architecture 

comprises three stages: data-driven stress modeling, 

Transformer-RL–based control optimization, and 

multi-objective evaluation. 
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Figure 1: Flow diagram of Transformer-RL based 

adaptive 

 

The first stage focuses on deriving key 

parameters that reflect electro-thermal and 

mechanical stress on the battery during operation. 

The dataset used in this study consists of high-

resolution time-series measurements, including 

voltage, current, temperature, cycle number, and 

internal resistance. To quantify the instantaneous 

stress level, a composite SI was formulated as a 

normalized combination of electrochemical, 

thermal, and aging indicators: 

 

𝑆𝐼𝑡 = 𝛼1
Δ𝑇𝑡
𝑇𝑚𝑎𝑥

+ 𝛼2
𝑅𝑡 − 𝑅0
𝑅0

+ 𝛼3(1 − 𝑆𝑜𝐻𝑡) 

 

where Δ𝑇𝑡represents the temperature 

deviation from the nominal range, 𝑅𝑡and 𝑅0denote 

the current and initial internal resistance, and 𝑆𝑜𝐻𝑡is 

the instantaneous state of health. The weighting 

coefficients 𝛼1, 𝛼2, 𝛼3were empirically tuned to 0.4, 

0.35, and 0.25, respectively, to balance the influence 

of thermal and electrical stress components. The 

overall Stress Index was normalized to 100 % for 

baseline CC–CV charging and used as the reference 

for model comparison. 

 

In the second stage, the Transformer-RL 

control framework was developed to minimize the 

stress index in real time. The state vector 𝑠𝑡captures 

current SoC, temperature, resistance, and recent 

stress history, while the action 𝑎𝑡defines the control 

adjustment in charging current or voltage within 

predefined safety limits. The reward function 

integrates both performance and stress-reduction 

objectives and is expressed as: 

 

𝑟𝑡 = 𝛽1
Δ𝑆𝑜𝐶𝑡
Δ𝑡

− 𝛽2𝑆𝐼𝑡 − 𝛽3
Δ𝑇𝑡
𝑇𝑚𝑎𝑥

 

 

where 𝛽1, 𝛽2, 𝛽3are adaptive reward 

coefficients (0.5 : 0.3 : 0.2) that determine the trade-

off between charging speed, stress minimization, 

and temperature regulation. The goal of the RL 

agent is to maximize the cumulative discounted 

reward 𝑅 =∑ 𝛾𝑡𝑟𝑡
𝑇

𝑡=0
, ensuring a global balance 

between performance efficiency and stress 

mitigation over the entire charging episode. 

The Transformer encoder within the RL agent 

extracts long-term temporal relationships from 

sequential operating data using a multi-head self-

attention mechanism. This enables the controller to 

recognize subtle degradation patterns and anticipate 

stress build-up before it occurs. The encoded 

temporal features feed into an Actor–Critic network, 

where the Actor selects optimal control actions and 

the Critic estimates the corresponding value 

function. The networks were trained using 

Advantage Actor–Critic (A2C) optimization for 500 

episodes, employing the Adam optimizer with a 

learning rate of 1 × 10⁻³ and a discount factor 𝛾 =
0.95. Early stopping was applied when cumulative 
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reward improvement fell below 0.001 over 20 

consecutive episodes. 

 

In the final stage, the model’s effectiveness 

was validated through a combination of quantitative 

metrics and multi-objective evaluation. The 

performance metrics include the average stress 

energy (W·s), maximum temperature (°C), internal 

resistance (Ω), and SoH retention (%) across 

multiple cycles. The stress reduction efficiency 

(SRE) was defined as: 

 

𝑆𝑅𝐸 =
𝑆𝐼𝑏𝑎𝑠𝑒 − 𝑆𝐼𝑚𝑜𝑑𝑒𝑙

𝑆𝐼𝑏𝑎𝑠𝑒
× 100% 

 

where 𝑆𝐼𝑏𝑎𝑠𝑒is the mean stress index under 

CC–CV charging. This indicator quantifies the 

degree of stress suppression achieved by the 

adaptive controller. Additionally, cumulative reward 

convergence and Pareto-front analysis between 

charging speed and stress reduction were used to 

verify model robustness and trade-off balance. 

 

The methodology establishes a unified and 

intelligent control system that integrates 

Transformer-driven perception with RL–based 

decision intelligence, enabling real-time, health-

aware stress mitigation. This adaptive strategy 

ensures that battery cells operate within safe thermal 

and electrochemical limits while maintaining high 

energy efficiency, forming a critical foundation for 

next-generation sustainable battery management 

systems. 

 

4. Results and Discussion  

The results and discussion section presents a 

comprehensive evaluation of the proposed 

Transformer-RL–based adaptive control framework 

for minimizing electro-thermal stress in lithium-ion 

batteries. The model’s performance was analyzed in 

comparison with conventional and deep learning–

based control strategies including CC–CV, Rule-

Based, LSTM, and GRU models. The experiments 

were conducted using real-time battery datasets 

under variable current and temperature conditions to 

assess both stress suppression and charging 

performance. The results are discussed in terms of 

temperature dynamics, internal resistance evolution, 

stress indices, SoH retention, and reward 

convergence, followed by a multi-objective trade-

off and overall performance analysis. 

 

 
Figure 1: Temperature Profiles under Different 

Control Methods 

 

The temperature evolution of the battery 

during charging for different control approaches is 

illustrated in figure 1. The conventional CC–CV 

profile exhibits a steep and uncontrolled 

temperature rise, exceeding 45°C, mainly due to its 

constant high-current phase that does not adapt to 

thermal variations. The Rule-Based approach 

introduces threshold-based regulation, resulting in a 

moderate reduction in temperature fluctuations but 

still lacks smooth adaptability. In contrast, the 

LSTM and GRU models show improved stability by 

learning temporal dependencies from sensor data, 

maintaining peak temperatures below 42°C. 

However, the proposed Transformer-Adaptive 

controller achieves the best thermal management, 

maintaining a smooth, stable temperature curve 

below 40°C throughout the charging process. This 

improvement is attributed to the model’s attention-

driven learning, which enables it to dynamically 

modulate charging current based on thermal 

gradients and historical context. The results confirm 

that the proposed system effectively suppresses 

https://www.gyanvihar.org/researchjournals/ctm_journals.php
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thermal stress while maintaining efficient charging 

performance. 

 

 
Figure 2: Internal Resistance Evolution over 

Charge–Discharge Cycles 

 

The change in internal resistance (R) across multiple 

charge–discharge cycles is shown in figure 2. The 

CC–CV method leads to a steady rise in resistance, 

indicating continuous electrochemical strain and 

SEI (Solid Electrolyte Interphase) layer thickening. 

The rule-based and recurrent (LSTM, GRU) models 

show relatively slower resistance growth due to 

partially adaptive current regulation. However, the 

Transformer-based adaptive controller demonstrates 

the lowest resistance growth rate, indicating 

minimal electrochemical degradation and 

mechanical strain within the cell. This stability is 

directly linked to the model’s ability to predict stress 

accumulation early and adjust the control policy 

accordingly. A lower internal resistance corresponds 

to better charge transfer efficiency and reduced 

ohmic heating, highlighting the success of the 

proposed method in reducing long-term 

degradation. 

 

 
Figure 3: Stress Index Comparison 

 

A comparative analysis of the normalized 

Stress Index (SI) across different control strategies 

is given in figure 3. The stress index quantifies 

combined thermal, electrochemical, and health-

related stress normalized to 100% for the baseline 

CC–CV method. As shown, the Transformer-

Adaptive model achieves the lowest stress index at 

59%, representing a 41% reduction compared to the 

baseline. The rule-based, LSTM, and GRU models 

achieve moderate improvements, with stress indices 

of 86%, 73%, and 68%, respectively. The sharp 

reduction achieved by the proposed approach 

validates its superior ability to regulate thermal and 

electrical parameters in real time, minimizing 

cumulative stress energy. This outcome directly 

supports the hypothesis that reinforcement-based 

adaptive learning can dynamically optimize 

charging behavior to suppress stress formation more 

effectively than static or heuristic control 

techniques. 

 

 
Figure 4: SoH Retention vs Cycle Count 
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 The State of Health (SoH) retention of the 

battery across 300 charge–discharge cycles for each 

control method is illustrated in figure 4. The CC–

CV curve exhibits rapid SoH decline, maintaining 

only about 90% capacity after 300 cycles due to 

consistent over-stressing and temperature 

excursions. The LSTM and GRU adaptive methods 

slow down degradation, preserving 94%–95% of 

original capacity. The Transformer-Adaptive 

control shows a clear advantage, maintaining more 

than 95% capacity even after extended cycling. This 

demonstrates the system’s capability to limit 

electrochemical wear by optimizing charging 

parameters and minimizing stress energy 

accumulation. The strong correlation between low 

stress index and higher SoH retention validates the 

effectiveness of the multi-objective reward 

formulation, which balances performance speed 

with health preservation. 

 

 
Figure 5: Cumulative Reward Convergence of 

Adaptive Controller 

 

The cumulative reward convergence during 

the training of the Transformer-RL model is 

depicted in figure 5. The curve shows an initial 

phase of fluctuation as the agent explores different 

control actions, followed by a stable convergence 

around episode 200, where the cumulative reward 

reaches approximately 0.91. This indicates that the 

agent successfully learns an optimal policy 

balancing fast charging and stress minimization 

objectives. The smooth and monotonic convergence 

trend signifies training stability and effective reward 

design. In contrast to conventional RL models that 

often exhibit oscillatory behavior, the inclusion of 

attention-based temporal representation enables 

faster and more consistent learning by accurately 

capturing relationships between SoC, temperature, 

and stress parameters across long time horizons. 

 

 
Figure 6:  Pareto Frontier of Charging Speed vs 

Stress Reduction 

 

The Pareto Frontier depicting the trade-off 

between charging speed and stress reduction 

achieved by different models is visualized in figure 

6. Each data point represents a control strategy’s 

best achievable performance across both objectives. 

The proposed Transformer-Adaptive system 

occupies the upper-right region of the frontier, 

achieving both the highest stress reduction (~36%) 

and the fastest charging rate improvement (~35%) 

relative to the baseline CC–CV. Conventional 

methods cluster in the lower-left region, reflecting 

slower charging and higher stress. This Pareto 

dominance illustrates that the proposed framework 

successfully resolves the long-standing trade-off 

between speed and safety in battery charging, 

establishing it as a multi-objective optimal solution. 

 

https://www.gyanvihar.org/researchjournals/ctm_journals.php


     

 

       Available online at   https://www.gyanvihar.org/researchjournals/ctm_journals.php 

       SGVU International Journal of Convergence of Technology and Management 

                                                                                                       E-ISSN: 2455-7528 

                                                                                       Vol.12 Issue 1 Page No 193-202 

 

Correspondence to: Rajeshwari Mahantesh Thadi, Department of Electronics and Communication Engineering, Suresh Gyan Vihar University, 

India   

Corresponding author. E-mail addresses:rajeshwarithadi@gmail.com 

201 | P a g e  

 
Figure 7: Radar Chart of Overall Performance 

 

The holistic view of the comparative 

performance across five normalized metrics like 

charging speed, thermal stability, stress reduction, 

efficiency, and SoH retention is shown in figure 7 

by radar chart. The radar chart shows that the 

Transformer-Adaptive model forms a nearly 

circular region encompassing high scores on all 

axes, indicating balanced superiority across every 

dimension. Specifically, it achieves an overall score 

of 95, significantly higher than 89 for GRU, 87 for 

LSTM, and 71 for CC–CV. This demonstrates the 

robustness and generalization capability of the 

Transformer-RL controller across multiple 

objectives. Its attention mechanism allows dynamic 

adaptation to changing conditions, while 

reinforcement optimization ensures continuous 

improvement through experience-driven learning. 

The results collectively highlight the system’s 

ability to simultaneously achieve faster, safer, and 

more sustainable battery operation. 

 

6. Conclusion 

This study presented a comprehensive ML–

Based Adaptive Control Framework that effectively 

reduces electro-thermal and mechanical stress in 

lithium-ion batteries under dynamic charging 

environments. By integrating Transformer-based 

temporal modeling with RL driven optimization, the 

proposed system demonstrated the ability to 

intelligently adapt charging behavior in real time 

while maintaining safety and efficiency. The 

introduction of a composite SI enabled accurate 

quantification of multi-dimensional stress arising 

from temperature rise, internal resistance growth, 

and SoH degradation. This stress metric served as a 

continuous feedback signal for the Transformer-RL 

controller, allowing it to balance charging speed, 

thermal stability, and degradation control through a 

multi-objective reward formulation. Experimental 

results revealed that the proposed Transformer-

Adaptive Controller significantly outperformed 

conventional CC–CV, rule-based, and recurrent 

neural network based strategies across all evaluation 

metrics. It achieved a 36.3% reduction in 

cumulative stress, limited the maximum operating 

temperature to below 40 °C, improved SoH 

retention to 96.4%, and sustained an overall 

charging efficiency above 97%. These 

improvements confirm that the model not only 

accelerates charging but also actively suppresses 

stress-induced degradation by continuously learning 

from dynamic electrochemical feedback. The stable 

reward convergence and superior Pareto 

performance further validate the robustness and 

adaptability of the proposed method. The findings 

of this work establish that combining attention-

guided temporal learning with reinforcement-based 

adaptive decision-making can transform traditional 

battery management into a self-optimizing, stress-

aware control paradigm. This hybrid intelligence 

approach provides a scalable and generalizable 

solution suitable for electric vehicles, renewable 

energy storage systems, and smart grids, where 

performance, safety, and longevity are equally 

critical.  
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