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Abstract: Accurate short-term and long-term power consumption forecasting is critical for ensuring reliable
grid operation, efficient energy management, and demand-side optimization in modern smart grid
environments. Traditional statistical forecasting models often struggle to capture the nonlinear, dynamic, and
temporal dependencies present in real-world electricity consumption patterns. To address these limitations,
this paper proposes a Deep Learning-Based Temporal Forecasting Framework designed to achieve high-
accuracy power consumption prediction using smart meter data. The framework integrates advanced
temporal neural architectures including LSTM, GRU, Bi-LSTM, and CNN-LSTM—and introduces a hybrid
deep learning model that combines convolutional feature extraction with recurrent sequence learning for
enhanced performance. Comprehensive experiments were conducted using real smart grid datasets, and
comparative evaluations demonstrate that the proposed model outperforms conventional deep learning and
classical time series methods in terms of MAE, RMSE, MAPE, and R? score. Results show a significant
improvement of up to 28-35% in prediction accuracy, particularly for multi-step ahead forecasting. The
findings highlight the effectiveness of deep learning in modeling complex energy consumption behaviors
and provide a scalable framework for utilities, policymakers, and smart grid operators to enable precise load
forecasting, demand response planning, and intelligent energy distribution.

Keywords: Power Consumption Forecasting, Smart Grids, Deep Learning, CNN-BIiLSTM Hybrid Model,
Time-Series Prediction

advancements is accurate power consumption
forecasting, which directly influences load
balancing, demand response planning, energy
pricing, and grid stability [2,3]. As electricity

I. INTRODUCTION
The rapid evolution of smart grids has transformed
the modern power system into a highly

interconnected, data-driven infrastructure capable
of supporting real-time monitoring, control, and
intelligent energy management [1]. One of the
most critical functionalities enabling these

demand continues to grow due to urbanization,
electric mobility, and the integration of distributed
energy resources, reliable forecasting methods
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have become essential for both utility operators
and policymakers.

Traditional statistical forecasting models such as
ARIMA, SARIMA, and exponential smoothing
have been widely used for short-term load
forecasting [4]. However, these methods often
struggle to capture the nonlinear, nonstationary,
and highly dynamic patterns inherent in real-world
energy consumption data. Factors such as
consumer behavioral variability, seasonal effects,
weather fluctuations, and sudden load changes
create complex temporal relationships that exceed
the modeling capabilities of classical approaches
[5]. As a result, there is a growing need for more
advanced forecasting techniques capable of
learning and adapting to such complexities.

Recent advancements in deep learning have shown
significant promise in addressing these challenges.
Recurrent neural networks (RNNSs), particularly
Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) models, have demonstrated
strong capabilities in handling sequential data
through their ability to retain long-range
dependencies [6-8]. Similarly, Convolutional
Neural Networks (CNNs) have proven effective in
extracting meaningful temporal features from high-
resolution  signals. By combining these
architectures, hybrid deep learning frameworks can
capture both short-term variations and long-term
temporal patterns within power consumption data.

Motivated by these developments, this paper
proposes a Deep Learning-Based Temporal
Forecasting Framework specifically designed for
achieving high-accuracy power consumption
prediction in smart grids. The framework integrates
CNN layers for local temporal pattern extraction
with Bi-LSTM layers for bidirectional sequence
learning, enabling the model to understand
consumption dynamics from multiple perspectives.
The proposed hybrid model is evaluated against
several benchmark methods, including LSTM,
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GRU, BIi-LSTM, CNN-LSTM, and classical
statistical models, using real smart meter datasets.

The contributions of this work are fourfold. First, a
hybrid deep learning architecture integrating CNN
and Bi-LSTM layers is developed to enhance
temporal  forecasting accuracy. Second, a
comprehensive feature engineering and
preprocessing pipeline is introduced to effectively
capture seasonality, periodicity, and contextual
information such as weather variables and time-
based attributes. Third, the proposed model
undergoes extensive performance evaluation across
multiple prediction horizons using MAE, RMSE,
MAPE, and R2? metrics to ensure robust
assessment. Fourth, the framework is rigorously
compared with state-of-the-art statistical and deep
learning models, demonstrating  significant
improvements in prediction accuracy. The results
clearly highlight the superiority of the proposed
approach in  modeling nonlinear  energy
consumption patterns and generating reliable
multi-step ahead forecasts, which are essential for
the development of intelligent, stable, and energy-
efficient smart grid systems.

Il. LITERATURE REVIEW

Accurate  forecasting of electrical power
consumption has long been a critical area of study
within power systems, artificial intelligence, and
data-driven modeling. Existing research efforts can
be broadly classified into classical statistical
methods, machine learning techniques, and deep
learning—based architectures, each offering distinct
advantages and limitations [9]. Traditional
statistical approaches such as ARIMA, SARIMA,
Holt-Winters  exponential ~ smoothing,  and
regression-based time-series models have been
widely used due to their interpretability and low
computational cost [4,10]. These models perform
well for stationary and linear patterns, making
them suitable for basic short-term load forecasting.
However, their reliance on linearity and stationarity
assumptions limits their ability to effectively model
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nonlinear consumption behaviors, abrupt load
fluctuations, and complex dependencies influenced
by factors such as weather, consumer habits, or
socio-economic variations. As a result, their
forecasting accuracy declines significantly when
applied to high-resolution, noisy smart meter data
or multi-step ahead predictions.

With increasing complexity in energy consumption
patterns, machine learning approaches such as
Support Vector Regression, Random Forests,
Gradient Boosting, and Artificial Neural Networks
have gained popularity. These methods have
demonstrated improved capability in handling
nonlinear relationships and diverse consumption
profiles [11,12\. Nonetheless, most machine
learning models do not inherently capture temporal
dependencies, requiring manually engineered lag
features to represent historical behavior. This
limitation restricts their ability to learn long-term
temporal patterns, making them less suitable for
sequential and highly dynamic electricity
consumption data. Deep learning has emerged as a
transformative  solution to overcome these
challenges by providing powerful sequence-
learning capabilities. Recurrent architectures such
as LSTM and GRU have shown exceptional
performance in learning long-term temporal
relationships directly from raw time-series data,
addressing the challenges posed by nonlinearity,
seasonality, and high variability in load
consumption [13]. Bidirectional LSTM models
further enhance learning by analyzing sequences in
both forward and backward directions, improving
the model’s ability to capture contextual patterns
that influence consumption dynamics. These
advancements  have  significantly  improved
forecasting accuracy across various time horizons.

Building on these developments, recent studies
have investigated hybrid architectures that combine
convolutional and recurrent neural networks. CNN-
LSTM models leverage convolutional layers to
extract local temporal features such as sudden
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spikes or short-duration fluctuations before passing
the transformed sequences to recurrent layers for
long-range dependency learning. These hybrid
models have demonstrated superior performance,
particularly when dealing with complex, high-
frequency smart meter data [14]. Despite their
progress, several limitations remain. Many existing
models struggle with multi-horizon forecasting,
some fail to jointly capture local variations and
long-term  dependencies, and others lack
comprehensive comparisons with a broad range of
benchmark models [15]. Additionally, many
frameworks do not adequately incorporate
contextual variables such as weather conditions,
seasonal factors, or time-of-use characteristics, all
of which significantly influence consumption
behavior.

Despite substantial improvements enabled by deep
learning, the literature still reveals notable gaps.
There is a strong need for a unified hybrid deep
learning framework capable of effectively
capturing both short-term fluctuations and long-
term temporal trends. Effective integration of
contextual and seasonal features is essential for
realistic forecasting, while rigorous comparative
evaluation against various traditional and deep
learning models remains necessary to validate
performance  claims.  Moreover, improved
robustness is required to handle the complexity and
noise inherent in large-scale, high-resolution smart
meter datasets. Motivated by these challenges, the
present study introduces a Deep Learning-Based
Temporal Forecasting Framework that integrates
CNN-based local feature extraction with Bi-LSTM
sequence modeling. This combination offers a
more holistic, adaptive, and accurate prediction
mechanism tailored to the demands of modern
smart grid load forecasting.

I11. METHODOLOGY

This section explains the development of the
proposed deep learning—based temporal forecasting
framework designed to enhance the accuracy of

Correspondence to: Gosavi Kirti Raghuvir,Department of Electrical Engineering, Suresh Gyan Vihar University, India

Corresponding author. E-mail addresses:kirtigosavilé@gmail.com
186 |Page


https://www.gyanvihar.org/researchjournals/ctm_journals.php

Available online at https://www.gyanvihar.org/researchjournals/ctm_journals.php

smart grid power consumption prediction as shown
in figure 1. The methodology comprises seven
phases including data collection, preprocessing,
feature engineering, model architecture
formulation, model training with hyperparameter
tuning, performance evaluation, and baseline
comparative models.

Data Collection

w
Data Preprocessing
v

Feature Engineering

v
Deep Learning Models
(LSTH., GRU, Bi-LSTM, CHNMN-LSTM,
Proposed Hybrid DL Model)
v
Model Training and

Hvperparameter Optimization
w
Evaluation Metrics
(MAE, RMSE, MAPE, B*)
b

Baseline Comparative Models

Figure 1. Proposed Deep Learning—Based
Temporal Forecasting Framework

The smart meter dataset used in this work was
collected from residential and commercial
consumers at fixed intervals within a modern smart
grid infrastructure. The dataset includes active and
reactive power measurements, voltage and current
profiles, timestamp-based features such as date,
hour, and seasonal indicators, as well as external
environmental  variables  like  temperature,
humidity, and day type (weekday or holiday).
Together, these variables provide rich temporal and
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contextual information essential for reliable short-
term and long-term load forecasting.

To prepare high-quality inputs for the proposed
deep learning models, several preprocessing
operations were performed. Missing readings were
handled using linear interpolation for small gaps
and median imputation for longer gaps. Outliers
were removed using Z-score—based filtering to
address sudden abnormal fluctuations. All features
were normalized using min-max scaling to
stabilize neural network learning. Time-series
windowing was applied with look-back periods of
24, 48, and 72 time steps, enabling the model to
capture both short-term and long-term trends.
Additional engineered features such as hour-of-
day, day-of-week, season indices, lagged
consumption variables, and temperature—load
interaction terms were also introduced to account
for seasonal behavior and contextual patterns in
consumption.

The forecasting framework integrates multiple
deep learning architectures to capture the complex
temporal characteristics inherent in  power
consumption data. Initially, LSTM and GRU
networks were employed due to their proven
ability to model long-range dependencies while
mitigating vanishing gradient issues. Bidirectional
LSTM (Bi-LSTM) layers were then incorporated to
learn both forward and backward temporal
patterns, improving prediction accuracy for rapidly
changing consumption sequences. Additionally, a
CNN-LSTM hybrid structure was implemented,
where 1D convolutional layers extract local
temporal variations such as abrupt load changes
before feeding the features into LSTM layers for
deeper sequence modeling. The final proposed
hybrid model integrates CNN layers for local
feature extraction, Bi-LSTM layers for capturing
contextual temporal dependencies, and fully
connected dense layers for regression-based
prediction output. This combination enhances the
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model’s capability to learn both global and
localized load behaviors.

The model training process was carried out using
the Adam optimizer and Mean Squared Error
(MSE) as the loss function. Training was
performed with a batch size of 32 over 50 epochs,
with early stopping employed to prevent
overfitting. Hyperparameters including the number
of LSTM units (32-128), CNN filters (16-64),
kernel sizes (3-7), and learning rates (0.0001-
0.001) were optimized using Grid Search and
Bayesian Optimization techniques to obtain the
best-performing configuration.

To ensure fair and comprehensive evaluation, the
model’s performance was assessed using several
forecasting metrics such as Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), Mean
Absolute Percentage Error (MAPE), and the
Coefficient of Determination (R?). These metrics
enabled robust comparison of accuracy across
different forecasting horizons including 15-minute,
30-minute, 1-hour, and 6-hour ahead predictions,
ensuring that the model performs well under
diverse temporal scenarios.

Finally, the superiority of the proposed hybrid deep
learning model was validated by benchmarking it
against established baseline methods including
ARIMA, SARIMA, Prophet, and other
conventional deep learning architectures. This
comparison provides strong empirical evidence of
the enhanced predictive capability and robustness
of the proposed forecasting framework.

IV. Results and Discussion

The section presents a comprehensive analysis of
the forecasting performance achieved by the
proposed hybrid deep learning framework. The
evaluation covers multiple dimensions, including
model-to-model ~ comparisons, multi-horizon
forecasting capability, and benchmarking against
classical statistical approaches. The results are
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interpreted using key performance metrics such as
MAE, RMSE, MAPE, and R? to provide a clear
understanding of the model’s effectiveness.
Additionally, graphical analyses through the actual
vs. predicted plot, loss convergence behavior, error
distribution, and comparative MAE charts further
validate the robustness and reliability of the
proposed forecasting methodology. The following
tables and figures summarize these findings and
highlight the significant improvements attained by
the proposed model in capturing nonlinear load
patterns and temporal dependencies in smart grid
environments.

Table 1: Performance Comparison of DL Models
for Power Consumption Forecasting

Model RMSE MAPE R2 Score
(kW) (%)
LSTM 0.297 291 0.972
GRU 0.311 3.12 0.967
Bi- 0.281 2.74 0.975
LSTM
CNN- 0.269 2.51 0.981
LSTM
Proposed 0.228 2.08 0.989
Hybrid
DL
Model

The comparative performance of various deep
learning models used for power consumption
forecasting is given in table 1. The results clearly
show that the Proposed Hybrid Deep Learning
Model outperforms all other architectures across
RMSE, MAPE, and R? metrics. The proposed
model achieves an RMSE of 0.228 kW,
significantly lower than the values obtained by
LSTM (0.297 kW), GRU (0.311 kW), Bi-LSTM
(0.281 kW), and CNN-LSTM (0.269 kW). This
reduction in error highlights the model’s ability to
capture  both  short-term and  long-term
dependencies more effectively. The improvement
in MAPE, reaching 2.08%, further demonstrates
the model’s robustness against fluctuations in
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power consumption. Additionally, the proposed
model achieves the highest R? score of 0.989,
indicating a strong correlation between actual and
predicted values. These results collectively confirm
that integrating CNN for local pattern extraction
with Bi-LSTM for contextual temporal learning
significantly enhances forecasting accuracy.

Table 2: Forecasting Accuracy for Different
Prediction Horizons

Prediction MAE RMSE MAPE

Horizon (kW) (kW) (%)

15 minutes 0.112 0.194 1.84
ahead

30 minutes 0.137 0.231 2.12
ahead

1 hour ahead 0.162 0.278 2.43

2 hours ahead 0.207 0.346 3.09

6 hours ahead 0.298 0.432 4.87

The forecasting performance of the proposed
model across different prediction horizons ranging
from 15 minutes to 6 hours ahead is evaluated as
presented in table 2. The results show a clear trend
where forecasting error increases as the prediction
horizon extends. For very short-term forecasts,
such as 15 minutes ahead, the model achieves high
accuracy with an MAE of 0.112 kW and RMSE of
0.194 kW, reflecting its capability to effectively
capture immediate load variations. As the horizon
increases to 30 minutes and 1 hour, the model
maintains strong performance with MAE values of
0.137 kW and 0.162 kW, respectively. However,
for longer horizons such as 2 hours and particularly
6 hours ahead, the errors naturally increase due to
greater uncertainty and variability in power
consumption patterns. The MAPE increases from
1.84% at 15 minutes to 4.87% at the 6-hour
horizon, which is still competitively low for multi-
step forecasting. Overall, the model demonstrates
excellent stability and reliability across both short-
term and extended forecasting windows.
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Table 3: Comparison with Classical Statistical
Models

Model MAE RMSE | MAPE
(kw) | (kW) (%)
ARIMA 0.442 0.601 7.92
SARIMA 0.391 0.554 6.41
Prophet 0.348 0.513 5.94
Proposed hybrid | 0.142 0.228 2.08
DL Model

The comparative analysis between the proposed
hybrid deep learning model and traditional
statistical forecasting techniques such as ARIMA,
SARIMA, and Prophet is given in table 3. The
results reveal a substantial performance gap
favoring the proposed deep learning framework.
Classical models exhibit significantly higher errors,
with ARIMA showing an MAE of 0.442 kW and
Prophet yielding 0.348 kW, compared to the
proposed model’s much lower MAE of 0.142 kW.
Similarly, RMSE values for ARIMA (0.601 kW)
and SARIMA (0.554 kW) are more than double
those of the proposed model (0.228 kW). The
MAPE values show the same pattern, where
statistical models record error percentages between
5.94%-7.92%, while the proposed approach
achieves a dramatically lower 2.08%. These
findings clearly highlight the limitations of
traditional linear models in handling nonlinear and
dynamic consumption patterns, and demonstrate
the superior forecasting capability of deep
learning-based architectures for modern smart grid
applications.

1.0

Power Consumption (kW)
(=]
o

—— Actual
—1.0 1 —— predicted

o 20 a0 60 80 100
Time

Figure 2: Actual vs Predicted Power Consumption

Correspondence to: Gosavi Kirti Raghuvir,Department of Electrical Engineering, Suresh Gyan Vihar University, India

Corresponding author. E-mail addresses:kirtigosavilé@gmail.com
189 |Page


https://www.gyanvihar.org/researchjournals/ctm_journals.php

Available online at https://www.gyanvihar.org/researchjournals/ctm_journals.php

The  comparison  between actual  power
consumption values and the predictions generated
by the proposed hybrid deep learning model is
illustrated in figure 2. The predicted curve closely
follows the shape, peaks, and troughs of the actual
consumption pattern, indicating the model’s strong
ability to capture temporal dynamics and
consumption fluctuations accurately. The minimal
deviation observed between the two curves
demonstrates the model’s ability to learn both
short-term variations and long-term dependencies
present in smart meter data. This close alignment
confirms the robustness and generalization
capability of the proposed approach when applied
to real-world test data, reinforcing its effectiveness
for practical smart grid forecasting applications.

0.0200 A
= Training Loss
0.0175 4\ Validation Loss
0.0150 \
0.0125 - N\
¥ 0.0100 -
=
0.0075 - .
0.0050 - \
0.0025 - ~—
\._,____
0.0000 - —_—

o 10 20 30 40 50
Epochs

Figure 3: Model Loss Convergence During
Training and Validation

The training and validation loss curves across 50
epochs. Both curves demonstrate a smooth and
consistent downward trend, indicating stable
learning and effective gradient optimization is
shown in figure 3. The validation loss converges to
approximately  0.0018, reflecting  minimal
generalization error and validating that no
overfitting occurred during training. The close
proximity of the training and validation loss curves
further confirms that the model maintains excellent
balance  between model complexity and
generalization performance.  The  smooth
convergence observed in the figure highlights the
suitability of the chosen architecture and

SGVU International Journal of Convergence of Technology and Management

E-ISSN: 2455-7528
Vol.12 Issue 1 Page No 184-192

hyperparameters for accurate and stable power
consumption forecasting.

50

Frequency
w -
[=] Q
. X

N
[=]
L

=
Q

o -

—0.2 —0.1 0.0 0.1 0.2 0.3
Prediction Error (kW)

Figure 4: Error Distribution of Proposed Model

The error distribution of the proposed hybrid deep
learning model, illustrating the difference between
actual and predicted values is illustrated in figure
4. The histogram shows that most prediction errors
lie within the narrow range of —0.15 to +0.20 kW,
reflecting a tightly clustered and symmetric
distribution. This indicates that the majority of
predictions made by the model are very close to the
ground truth. The concentration of errors around
zero signifies low bias and high reliability in the
forecasting process. The absence of large error
spikes further emphasizes the model’s robustness
and consistent performance across different load
conditions.

0.200

0.175
0.150 1
0.125
0.100 A
0.075
0.050 -
0.025
0.000 -
LsTM GRU

Figure 5: Comparative MAE of DL Models

MAE (kW)

The comparative analysis of Mean Absolute Error
(MAE) values for different deep learning models,
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including LSTM, GRU, Bi-LSTM, CNN-LSTM,
and the proposed hybrid model is shown in figure
5. The proposed model achieves the lowest MAE
among all techniques, clearly outperforming
traditional recurrent networks and hybrid CNN-
LSTM  configurations.  This  improvement
demonstrates the effectiveness of combining
convolutional layers for local temporal feature
extraction with Bi-LSTM layers for capturing long-
range contextual dependencies. The significant
reduction in MAE confirms that the proposed
architecture is better suited for modeling complex
and nonlinear consumption patterns, thereby
offering superior forecasting performance.

Overall, the experimental outcomes demonstrate
that the proposed hybrid CNN-BILSTM
framework significantly enhances forecasting
accuracy across all evaluation settings. The model
consistently achieved lower error metrics,
smoother convergence behavior, and tighter error
distributions compared to existing deep learning
and classical statistical models. The superior multi-
horizon forecasting performance further confirms
the model’s capability to generalize effectively
under varying load conditions and time intervals.
These findings suggest that the proposed approach
can serve as a highly reliable tool for real-world
smart grid applications, supporting advanced
demand-side management, energy planning, and
grid stability enhancement. The demonstrated
improvements establish a strong foundation for
deploying deep learning-driven  forecasting
solutions in next-generation intelligent energy
systems.

VI. CONCLUSION

his study presented a robust Deep Learning-Based
Temporal Forecasting Framework designed to
achieve  high-accuracy power  consumption
prediction in smart grids. By integrating
convolutional neural networks for local temporal
feature extraction with Bi-LSTM layers for
capturing long-range dependencies, the proposed
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hybrid model demonstrated superior forecasting
capability compared to conventional deep learning
architectures and traditional statistical methods.
Comprehensive experimentation across multiple
prediction horizons confirmed that the model
consistently  provided lower error metrics,
smoother  convergence, and more stable
performance, even under highly dynamic and noisy
consumption patterns. The results clearly establish
that the hybrid CNN-BIiLSTM architecture is
highly effective in modeling the nonlinear,
fluctuating, and context-dependent nature of real-
world power consumption data. Its strong
generalization performance makes it a reliable tool
for enabling smarter load management, enhanced
operational planning, and improved grid stability.
The framework’s adaptability and accuracy
position it as a promising solution for modern
smart grid applications where precise forecasting is
essential for efficiency and resilience. Future
enhancements may include incorporating
renewable generation forecasting, integrating
exogenous variables such as electricity pricing or
occupancy data, and exploring federated learning
approaches to ensure data privacy while supporting
large-scale deployment. Overall, the proposed
framework provides a solid foundation for
advanced, data-driven energy management systems
and contributes significantly to the ongoing
evolution of intelligent power grids.
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