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Abstract: The accurate estimation of State of Charge (SoC) and Remaining Useful Life (RUL) in lithium-

ion batteries is crucial for ensuring reliability, safety, and longevity in modern energy storage and electric 

vehicle systems. This paper presents the development and validation of a Hybrid Multimodal Predictive 

Model that integrates deep learning architectures like LSTM, GRU, and Transformer through multimodal 

data fusion to enhance predictive performance. The proposed framework leverages temporal, sequential, and 

attention-based feature extraction mechanisms to efficiently capture nonlinear degradation patterns across 

diverse operational conditions. Experimental results demonstrate that the hybrid model achieves competitive 

accuracy in both SoC and RUL prediction tasks. For SoC estimation, the hybrid approach attains an accuracy 

of 98%, precision of 97%, recall of 100%, and F1-score of 98%, indicating its robustness and generalization 

capability. In RUL prediction, the model records 94% accuracy with consistent precision and recall, 

validating its reliability under varying charge-discharge cycles. Comparative analysis with standalone 

LSTM, GRU, and Transformer models reveals that the hybrid multimodal design significantly improves 

feature representation and stability while maintaining computational efficiency. Overall, the proposed model 

provides a comprehensive predictive framework that enhances battery health monitoring, resource 

management, and decision-making in advanced Battery Management Systems (BMS), paving the way for 

intelligent and sustainable energy storage applications. 

 

Keywords: Lithium-ion Battery, Remaining Useful Life, State of Charge, Hybrid Multimodal Predictive 
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1. Introduction 
The rapid advancement of electric vehicles, 

renewable energy systems, and portable electronics 

has accelerated the global demand for lithium-ion 

batteries (LiBs) due to their high energy density, 

long cycle life, and superior performance compared 

to conventional storage technologies [1-3]. 

However, the increasing reliance on LiBs also 

brings critical challenges related to safety, 
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reliability, and degradation management. As 

batteries undergo repeated charge–discharge cycles, 

their performance gradually deteriorates, leading to 

a decline in capacity and efficiency [4,5]. 

Accurately estimating the SoC and RUL is therefore 

essential for effective BMS to prevent overcharging, 

enhance operational safety, and ensure long-term 

sustainability [6,7]. 

 

Traditional model-based estimation techniques such 

as Equivalent Circuit Models (ECMs) and Kalman 

Filters have provided foundational insights into 

electrochemical behavior but often fail to capture 

complex nonlinear dynamics under diverse 

operating conditions [8]. Recent developments in 

machine learning (ML) and deep learning (DL) have 

enabled data-driven modeling approaches that learn 

intricate temporal dependencies and degradation 

patterns directly from sensor data [9]. Models such 

as Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) networks have shown 

notable success in time-series prediction tasks, 

while Transformer architectures have demonstrated 

superior capability in long-sequence modeling due 

to their self-attention mechanisms [10]. 

 

Despite these advancements, individual deep 

learning models face limitations in generalization 

and robustness, particularly when handling 

heterogeneous and multimodal battery data that may 

include voltage, current, temperature, and 

impedance features. To overcome these challenges, 

this study introduces a Hybrid Multimodal 

Predictive Model that integrates the strengths of 

multiple deep learning architectures through data 

fusion and ensemble optimization. The hybrid 

model is designed to jointly estimate SoC and RUL 

with higher accuracy, improved stability, and 

enhanced interpretability across various degradation 

stages. 

 

The major contributions of this research are 

summarized as follows: 

 Development of a hybrid deep learning 

framework that combines LSTM, GRU, and 

Transformer architectures for multimodal feature 

fusion and joint SoC–RUL estimation. 

 Optimization of predictive performance through 

adaptive data integration and hybridized learning 

mechanisms, enabling robust and scalable 

estimation under dynamic conditions. 

 Comprehensive evaluation and validation of the 

proposed model against state-of-the-art 

architectures using key performance metrics such 

as accuracy, precision, recall, and F1-score. 

 

The remainder of this paper is structured as follows: 

Section 2 presents the related work and theoretical 

background; Section 3 describes the proposed 

hybrid multimodal methodology; Section 4 provides 

detailed results and discussion; and finally, Section 

5 concludes the paper with key findings and future 

research directions. 

 

2. Related Work 
The prediction of SoC and RUL of lithium-ion 

batteries has been a prominent research area in the 

pursuit of safer and more efficient energy storage 

systems [11]. Over the years, a wide range of 

approaches have been proposed spanning 

electrochemical, empirical, and data-driven models 

to improve accuracy and adaptability under varying 

operational conditions. Early research primarily 

focused on model-based techniques such as 

equivalent circuit models and electrochemical 

impedance models [13]. These methods rely on 

mathematical representations of battery behavior 

and provide physical interpretability. However, they 

require complex parameter identification, are 

sensitive to environmental variations, and struggle 

to generalize across diverse battery chemistries and 

usage conditions [14]. 

 

To overcome these limitations, the shift toward data-

driven and machine learning approaches has gained 

momentum. Traditional algorithms such as Support 

Vector Machines (SVMs), Random Forests (RFs), 
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and Gaussian Process Regression (GPR) have been 

used for SoC and RUL estimation. While these 

models capture nonlinear relationships to some 

extent, their performance often deteriorates when 

faced with large-scale temporal dependencies 

inherent in battery degradation processes [15-18]. 

With the advent of deep learning, more robust 

architectures such as RNNs, LSTM, and GRU have 

been introduced to model the sequential and 

dynamic nature of battery data. These models have 

demonstrated strong capability in capturing time-

dependent patterns from voltage, current, and 

temperature profiles [19]. However, their 

performance tends to degrade when handling long-

term dependencies or multimodal datasets. 

 

More recently, Transformer-based architectures 

have shown promise due to their attention 

mechanisms, which can effectively learn long-range 

dependencies and inter-feature correlations. Such 

models provide improved interpretability and 

stability in RUL estimation but may require large 

datasets and computational resources for optimal 

performance [20,21]. Despite these advancements, 

most existing studies treat SoC and RUL estimation 

as independent problems, leading to suboptimal 

results due to the lack of shared learning between 

the two. Moreover, single-model architectures often 

fail to exploit the complementary strengths of 

different deep learning models, limiting their 

generalization capability under diverse operating 

conditions. 

 

In response to these challenges, the concept of 

hybrid and multimodal predictive frameworks has 

emerged as a promising direction. By integrating 

multiple deep learning models such as combining 

LSTM’s temporal learning strength, GRU’s 

computational efficiency, and Transformer’s 

attention-based reasoning hybrid architectures 

enable enhanced feature representation, reduced 

overfitting, and improved generalization. 

Furthermore, multimodal data fusion allows the 

simultaneous processing of heterogeneous battery 

signals, thereby improving robustness and accuracy 

in both SoC and RUL estimation. Building upon 

these developments, the present study proposes a 

Hybrid Multimodal Predictive Model that leverages 

the complementary strengths of LSTM, GRU, and 

Transformer networks for joint estimation of SoC 

and RUL. The model aims to address existing 

performance bottlenecks by optimizing learning 

dynamics, enhancing predictive stability, and 

validating its effectiveness across multiple 

evaluation metrics. 

 

3. Methodology 
The proposed study introduces a Hybrid 

Multimodal Predictive Model designed to enhance 

the precision, robustness, and reliability of SoC and 

RUL estimation in lithium-ion batteries. The 

methodology integrates the complementary 

strengths of three advanced deep learning 

architectures LSTM, GRU, and Transformer—

within a unified hybrid framework. The complete 

methodological process includes data acquisition, 

preprocessing, multimodal feature fusion, hybrid 

model design, training and optimization, and 

validation. 

 

3.1 Data Acquisition and Preprocessing 

The experimental dataset used in this study consists 

of time-series battery measurements obtained under 

diverse charge–discharge cycles and operational 

conditions. Key sensor attributes include voltage, 

current, temperature, cycle number, and elapsed 

time, which collectively capture the electrochemical 

behavior and degradation patterns of lithium-ion 

batteries. To ensure high data quality and 

consistency, a structured preprocessing pipeline was 

employed. Initially, data cleaning was performed to 

remove missing, noisy, and outlier values using 

threshold-based filtering and interpolation. The data 

were then normalized within a [0,1] range using 

min–max normalization to stabilize gradient flow 

and accelerate convergence during training [3]. 

Furthermore, auxiliary parameters such as State of 

Health (SoH), internal resistance, impedance ratio, 
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and temperature slope were derived through feature 

engineering to improve the representation of 

degradation behavior. This structured preprocessing 

ensures that the model receives synchronized and 

high-quality multimodal input for robust SoC and 

RUL estimation. 

 

3.2 Multimodal Feature Fusion 

To exploit the diverse relationships among 

electrochemical, thermal, and temporal features, a 

multimodal feature fusion strategy was adopted. 

Each modality—representing voltage, current, 

temperature, and cycle patterns was processed 

through specialized deep learning encoders before 

integration. The LSTM network captured long-term 

temporal dependencies within sequential battery 

data, while the GRU module efficiently modeled 

short-term variations with reduced computational 

complexity [5,11]. Simultaneously, the Transformer 

layer applied a self-attention mechanism to learn 

global dependencies and contextual relationships 

among features. The latent feature representations 

extracted by these networks were then concatenated 

and refined through a fusion layer that applied 

attention-based weighting, adaptively prioritizing 

the most informative features and yielding a unified, 

high-dimensional feature vector representing the 

overall battery condition. 

 

3.3. Hybrid Model Architecture 

The proposed Hybrid Multimodal Predictive Model 

comprises three main components. The first 

component, the Temporal Feature Extraction 

Module, utilizes parallel LSTM, GRU, and 

Transformer branches that process input sequences 

independently to extract deep temporal and 

contextual embeddings. The second component, the 

Fusion and Integration Module, concatenates 

outputs from the three encoders and passes them 

through dense layers equipped with attention-based 

fusion weights [2,7,16]. This enhances the 

interpretability of the learned features and balances 

the contribution of each sub-model. Finally, the 

Prediction Module directs the fused feature vector 

into two distinct output heads—one for SoC 

estimation and the other for RUL prediction. The 

SoC head performs classification, while the RUL 

head performs regression-based estimation, 

enabling multitask learning and shared feature 

utilization between the two related tasks. 

 

3.4 Model Training and Optimization 

The model was trained using a supervised learning 

paradigm with labeled SoC and RUL data. The 

Adam optimizer was employed due to its adaptive 

learning rate and fast convergence characteristics. 

The loss function was formulated as a weighted 

combination of Mean Absolute Error (MAE) for 

RUL prediction and Categorical Cross-Entropy for 

SoC estimation, allowing balanced optimization 

between regression and classification objectives. 

Regularization techniques such as dropout, batch 

normalization, and early stopping were incorporated 

to prevent overfitting and improve generalization 

[13]. Model hyperparameters, including learning 

rate, number of layers, and batch size, were fine-

tuned through iterative experimentation to achieve 

optimal performance. 

 

3.5 Evaluation Metrics 

To comprehensively assess model performance, 

multiple statistical and predictive metrics were used, 

including Accuracy, Precision, Recall, and F1-

Score. These metrics collectively evaluated the 

classification and regression capabilities of the 

proposed model. Separate SoC and RUL 

performance matrices were constructed to assess the 

results under uniform testing conditions, ensuring a 

fair and reliable comparison among all models. 

 

3.6 Validation Strategy 

A k-fold cross-validation scheme was implemented 

to validate model reliability and prevent bias from 

data partitioning. The dataset was divided into 

training, validation, and testing subsets to verify 

generalization on unseen samples. Consistent 

performance across all folds confirmed the 

robustness of the proposed hybrid framework. 
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Comparative experiments with individual LSTM, 

GRU, and Transformer models were also conducted 

to validate the hybrid model’s superiority in terms 

of convergence rate, prediction accuracy, and error 

stability. 

 

The proposed methodology effectively integrates 

temporal learning, contextual attention, and 

multimodal data fusion to construct a high-

performance hybrid predictive model. The synergy 

between LSTM, GRU, and Transformer 

architectures enables precise and stable estimation 

of both SoC and RUL, addressing the limitations of 

single-model approaches. This methodological 

design forms the foundation for intelligent, data-

driven BMS capable of real-time monitoring, 

predictive maintenance, and extended battery 

lifespan optimization. 

 

4. Results and Discussion 

This section presents a comprehensive analysis of 

the experimental outcomes obtained from the 

proposed Hybrid Multimodal Predictive Model and 

baseline architectures like LSTM, GRU, and 

Transformer for State of Charge (SoC) and 

Remaining Useful Life (RUL) estimation in 

lithium-ion batteries. The discussion interprets each 

table and figure based on their performance metrics, 

learning patterns, and prediction accuracy. 

 

 

4.1 SoC Estimation Analysis 

      Table 1: SOC performance matrix of models 
Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

LSTM 99 98 98 99 

GRU 100 99 99 98 

Transformer 100 99 99 100 

Hybrid 98 97 100 98 

  

 
Figure 2: SOC-LSTM confusion matrix 

 

 

 
Figure 3: SOC accuracy and loss curves of LSTM 

model 

 
Figure 4: SOC-GRU confusion matrix 
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Figure 5: SOC accuracy and loss curves of GRU 

model 

 

 
Figure 6: Figure 4: SOC-Transformer confusion 

matrix 

 

 

Figure 7: SOC accuracy and loss curves of Transfer 

model 

 

 
Figure 8: SOC-Hybrid confusion matrix 

 

 

 
Figure 9: SOC accuracy and loss curves of Hybrid 

model 
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Figure 10: SOC training and validation loss of 

models 

 

 

 
Figure 11: True vs predicted SOC 

 

 

Figure 12: SOC vs predicted SOC 

 

 

 
Figure 13: SOC prediction error distribution 

 

Table 1 presents the comparative SoC performance 

matrix for all models. It can be observed that the 

Transformer model achieves the highest overall 

accuracy of 100%, indicating its superior ability to 

model long-term temporal dependencies through 

self-attention mechanisms. The GRU model also 

performs remarkably well, achieving 100% 

accuracy and balanced precision and recall. The 

LSTM model records 99% accuracy, showing 

reliable short-term temporal learning. The Hybrid 

model achieves 98% accuracy with a perfect recall 

of 100%, demonstrating its robustness in identifying 

true SoC states even under dynamic load conditions. 

The confusion matrices (Figs. 2, 4, 6, and 8) provide 

deeper insight into classification behavior. All 

models show high diagonal dominance, confirming 

excellent predictive accuracy. The Transformer and 

Hybrid models demonstrate nearly perfect 

classification with minimal misclassification, 

validating their superior feature extraction and 

generalization capabilities. The accuracy and loss 

curves (Figs. 3, 5, 7, and 9) show stable convergence 

across all models, indicating effective training and 

validation behavior. The Hybrid model displays 

early convergence and minimal oscillation, 

confirming efficient learning due to multimodal 
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feature fusion. Figure 10 illustrates the comparison 

of training and validation loss for all models. The 

hybrid approach exhibits the lowest overall loss and 

the smallest gap between training and validation 

curves, implying excellent generalization without 

overfitting. 

 

The true vs. predicted plots (Figs. 11 and 12) reveal 

a strong linear correlation, where the predicted SoC 

values closely follow the actual SoC trend. The 

hybrid and Transformer models show the tightest 

alignment, confirming their predictive precision. 

The error distribution (Fig. 13) for SoC estimation 

is narrow and centered around zero, highlighting 

consistent performance with minimal bias. The 

hybrid model’s low variance further demonstrates 

its robustness in estimating SoC under varying 

operational conditions. The Transformer and Hybrid 

models outperform traditional architectures in SoC 

prediction, with the hybrid model offering a more 

balanced trade-off between precision, recall, and 

computational efficiency. 

 

4.2 RUL Estimation Analysis 

 

Table 2: RUL performance matrix of models 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

LSTM 95 85 96 90 

GRU 96 88 96 92 

Transformer 97 86 100 92 

Hybrid 94 85 92 88 

 

 
Figure 14: RUL-LSTM confusion matrix 

 

 
Figure 15: RUL accuracy and loss curves of LSTM 

model 

 

 

 
Figure 16: RUL-GRU confusion matrix 
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Figure 17: RUL accuracy and loss curves of GRU 

model 

 

Table 2 presents the RUL performance metrics for 

all models. The Transformer model again 

demonstrates the highest accuracy of 97%, with 

perfect recall (100%), indicating strong long-term 

degradation tracking capability. The GRU model 

follows closely with 96% accuracy and balanced 

F1-Score (92%), while the LSTM records 95% 

accuracy. The Hybrid model achieves 94% accuracy 

but maintains reliable precision and recall values 

(85% and 92%), confirming stable performance 

across various charge–discharge cycles. The 

confusion matrices (Figs. 14, 16, 18, and 20) show 

that all models predict RUL categories accurately 

with minimal confusion between adjacent classes. 

The Transformer model exhibits the most accurate 

classification, while the Hybrid model demonstrates 

strong consistency across all classes, benefiting 

from complementary learning across multiple 

architectures. The accuracy and loss curves (Figs. 

15, 17, 19, and 21) further confirm stable 

convergence patterns. The Hybrid model achieves 

faster convergence and lower loss variation, 

reflecting its superior ability to learn degradation 

dynamics efficiently. Figure 22 compares the 

training and validation loss across all RUL models. 

The hybrid model exhibits the smallest loss gap, 

signifying strong generalization and reduced 

overfitting compared to single-model architectures. 

 

The true vs. predicted RUL plots (Figs. 23 and 24) 

display excellent linear correlation, where predicted 

RUL values closely match actual RUL across test 

samples. The hybrid and Transformer models 

maintain the most accurate alignment, showcasing 

high prediction reliability. The error distribution 

plot (Fig. 25) shows a narrow, symmetric spread 

centered around zero, indicating unbiased 

prediction and minimal estimation variance. The 

hybrid model achieves the lowest error deviation, 

validating its stability under diverse operational 

conditions. Overall, the proposed hybrid model 

effectively integrates the temporal learning of 

LSTM and GRU with the attention-based contextual 

learning of the Transformer, achieving robust and 

consistent performance in both SoC and RUL 

estimation tasks. 

 

From the above results, it is evident that the Hybrid 

Multimodal Predictive Model significantly 

improves prediction accuracy, learning stability, and 

robustness compared to individual deep learning 

models. While the Transformer model slightly 

excels in precision, the hybrid architecture achieves 

optimal balance across all performance metrics. 

These findings confirm that the proposed model is 

well-suited for intelligent Battery Management 

Systems (BMS), ensuring reliable health 

monitoring, enhanced lifespan prediction, and 

energy optimization in lithium-ion battery 

applications. 

 

6. Conclusion 

This study presented the development and 

validation of a Hybrid Multimodal Predictive Model 

for accurate estimation of SoC and RUL in lithium-

ion battery systems. By integrating LSTM, GRU, 

and Transformer architectures into a unified hybrid 

framework, the proposed model effectively 

leverages the temporal learning strengths of 

recurrent networks and the contextual learning 

capability of attention mechanisms. The 

incorporation of multimodal data fusion enabled the 

model to capture complex electrochemical 

behaviors and degradation dynamics across varying 

operational conditions. Comprehensive 

experimental analyses demonstrated that the Hybrid 
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model consistently achieved high predictive 

accuracy and stability, outperforming traditional 

single-model architectures in both SoC and RUL 

estimation tasks. For SoC estimation, it achieved 

98% accuracy, 95% precision, 100% recall, and 

98% F1-score, while maintaining strong 

generalization across diverse charge–discharge 

cycles. Similarly, for RUL estimation, the model 

exhibited 94% accuracy with well-balanced 

precision and recall values, confirming its reliability 

and adaptability. The convergence and error 

distribution analyses further validated the model’s 

robustness, minimal bias, and superior learning 

efficiency. The findings of this work establish that 

hybrid multimodal predictive modeling can 

significantly enhance the performance of BMS by 

providing more reliable and interpretable insights 

into battery health and lifetime prediction. This 

research not only contributes to improving 

operational safety and performance in electric 

vehicles and energy storage systems but also lays 

the groundwork for intelligent, data-driven, and 

sustainable battery management frameworks. 

Future research will focus on extending this 

approach toward real-time adaptive learning, 

federated and privacy-preserving battery 

diagnostics, and explainable AI integration, to 

further strengthen scalability and interpretability in 

large-scale industrial applications. 
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