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Abstract: The accurate estimation of State of Charge (SoC) and Remaining Useful Life (RUL) in lithium-
ion batteries is crucial for ensuring reliability, safety, and longevity in modern energy storage and electric
vehicle systems. This paper presents the development and validation of a Hybrid Multimodal Predictive
Model that integrates deep learning architectures like LSTM, GRU, and Transformer through multimodal
data fusion to enhance predictive performance. The proposed framework leverages temporal, sequential, and
attention-based feature extraction mechanisms to efficiently capture nonlinear degradation patterns across
diverse operational conditions. Experimental results demonstrate that the hybrid model achieves competitive
accuracy in both SoC and RUL prediction tasks. For SoC estimation, the hybrid approach attains an accuracy
of 98%, precision of 97%, recall of 100%, and F1-score of 98%, indicating its robustness and generalization
capability. In RUL prediction, the model records 94% accuracy with consistent precision and recall,
validating its reliability under varying charge-discharge cycles. Comparative analysis with standalone
LSTM, GRU, and Transformer models reveals that the hybrid multimodal design significantly improves
feature representation and stability while maintaining computational efficiency. Overall, the proposed model
provides a comprehensive predictive framework that enhances battery health monitoring, resource
management, and decision-making in advanced Battery Management Systems (BMS), paving the way for
intelligent and sustainable energy storage applications.

Keywords: Lithium-ion Battery, Remaining Useful Life, State of Charge, Hybrid Multimodal Predictive
Model, Deep Learning

batteries (LiBs) due to their high energy density,
1. Introduction long cycle life, and superior performance compared
The rapid advancement of electric vehicles, to conventional storage technologies [1-3].
renewable energy systems, and portable electronics =~ However, the increasing reliance on LiBs also
has accelerated the global demand for lithium-ion  brings critical challenges related to safety,
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reliability, and degradation management. As
batteries undergo repeated charge—discharge cycles,
their performance gradually deteriorates, leading to
a decline in capacity and efficiency [4,5].
Accurately estimating the SoC and RUL is therefore
essential for effective BMS to prevent overcharging,
enhance operational safety, and ensure long-term
sustainability [6,7].

Traditional model-based estimation techniques such
as Equivalent Circuit Models (ECMs) and Kalman
Filters have provided foundational insights into
electrochemical behavior but often fail to capture
complex nonlinear dynamics wunder diverse
operating conditions [8]. Recent developments in
machine learning (ML) and deep learning (DL) have
enabled data-driven modeling approaches that learn
intricate temporal dependencies and degradation
patterns directly from sensor data [9]. Models such
as Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) networks have shown
notable success in time-series prediction tasks,
while Transformer architectures have demonstrated
superior capability in long-sequence modeling due
to their self-attention mechanisms [10].

Despite these advancements, individual deep
learning models face limitations in generalization
and robustness, particularly when handling
heterogeneous and multimodal battery data that may
include voltage, current, temperature, and
impedance features. To overcome these challenges,
this study introduces a Hybrid Multimodal
Predictive Model that integrates the strengths of
multiple deep learning architectures through data
fusion and ensemble optimization. The hybrid
model is designed to jointly estimate SoC and RUL
with higher accuracy, improved stability, and
enhanced interpretability across various degradation
stages.

The major contributions of this research are
summarized as follows:
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e Development of a hybrid deep learning
framework that combines LSTM, GRU, and
Transformer architectures for multimodal feature
fusion and joint SOC—RUL estimation.

e Optimization of predictive performance through
adaptive data integration and hybridized learning
mechanisms, enabling robust and scalable
estimation under dynamic conditions.

e Comprehensive evaluation and validation of the
proposed model against state-of-the-art
architectures using key performance metrics such
as accuracy, precision, recall, and F1-score.

The remainder of this paper is structured as follows:
Section 2 presents the related work and theoretical
background; Section 3 describes the proposed
hybrid multimodal methodology; Section 4 provides
detailed results and discussion; and finally, Section
5 concludes the paper with key findings and future
research directions.

2. Related Work

The prediction of SoC and RUL of lithium-ion
batteries has been a prominent research area in the
pursuit of safer and more efficient energy storage
systems [11]. Over the years, a wide range of
approaches have been proposed spanning
electrochemical, empirical, and data-driven models
to improve accuracy and adaptability under varying
operational conditions. Early research primarily
focused on model-based techniques such as
equivalent circuit models and electrochemical
impedance models [13]. These methods rely on
mathematical representations of battery behavior
and provide physical interpretability. However, they
require complex parameter identification, are
sensitive to environmental variations, and struggle
to generalize across diverse battery chemistries and
usage conditions [14].

To overcome these limitations, the shift toward data-
driven and machine learning approaches has gained
momentum. Traditional algorithms such as Support
Vector Machines (SVMs), Random Forests (RFs),
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and Gaussian Process Regression (GPR) have been
used for SoC and RUL estimation. While these
models capture nonlinear relationships to some
extent, their performance often deteriorates when
faced with large-scale temporal dependencies
inherent in battery degradation processes [15-18].
With the advent of deep learning, more robust
architectures such as RNNs, LSTM, and GRU have
been introduced to model the sequential and
dynamic nature of battery data. These models have
demonstrated strong capability in capturing time-
dependent patterns from voltage, current, and
temperature  profiles [19]. However, their
performance tends to degrade when handling long-
term dependencies or multimodal datasets.

More recently, Transformer-based architectures
have shown promise due to their attention
mechanisms, which can effectively learn long-range
dependencies and inter-feature correlations. Such
models provide improved interpretability and
stability in RUL estimation but may require large
datasets and computational resources for optimal
performance [20,21]. Despite these advancements,
most existing studies treat SoC and RUL estimation
as independent problems, leading to suboptimal
results due to the lack of shared learning between
the two. Moreover, single-model architectures often
fail to exploit the complementary strengths of
different deep learning models, limiting their
generalization capability under diverse operating
conditions.

In response to these challenges, the concept of
hybrid and multimodal predictive frameworks has
emerged as a promising direction. By integrating
multiple deep learning models such as combining
LSTM’s temporal learning strength, GRU’s
computational efficiency, and Transformer’s
attention-based reasoning hybrid architectures
enable enhanced feature representation, reduced
overfitting, and  improved  generalization.
Furthermore, multimodal data fusion allows the
simultaneous processing of heterogeneous battery
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signals, thereby improving robustness and accuracy
in both SoC and RUL estimation. Building upon
these developments, the present study proposes a
Hybrid Multimodal Predictive Model that leverages
the complementary strengths of LSTM, GRU, and
Transformer networks for joint estimation of SoC
and RUL. The model aims to address existing
performance bottlenecks by optimizing learning
dynamics, enhancing predictive stability, and
validating its effectiveness across multiple
evaluation metrics.

3. Methodology

The proposed study introduces a Hybrid
Multimodal Predictive Model designed to enhance
the precision, robustness, and reliability of SoC and
RUL estimation in lithium-ion batteries. The
methodology integrates the complementary
strengths of three advanced deep learning
architectures LSTM, GRU, and Transformer—
within a unified hybrid framework. The complete
methodological process includes data acquisition,
preprocessing, multimodal feature fusion, hybrid
model design, training and optimization, and
validation.

3.1 Data Acquisition and Preprocessing

The experimental dataset used in this study consists
of time-series battery measurements obtained under
diverse charge—discharge cycles and operational
conditions. Key sensor attributes include voltage,
current, temperature, cycle number, and elapsed
time, which collectively capture the electrochemical
behavior and degradation patterns of lithium-ion
batteries. To ensure high data quality and
consistency, a structured preprocessing pipeline was
employed. Initially, data cleaning was performed to
remove missing, noisy, and outlier values using
threshold-based filtering and interpolation. The data
were then normalized within a [0,1] range using
min—max normalization to stabilize gradient flow
and accelerate convergence during training [3].
Furthermore, auxiliary parameters such as State of
Health (SoH), internal resistance, impedance ratio,
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and temperature slope were derived through feature
engineering to improve the representation of
degradation behavior. This structured preprocessing
ensures that the model receives synchronized and
high-quality multimodal input for robust SoC and
RUL estimation.

3.2 Multimodal Feature Fusion

To exploit the diverse relationships among
electrochemical, thermal, and temporal features, a
multimodal feature fusion strategy was adopted.
Each modality—representing voltage, current,
temperature, and cycle patterns was processed
through specialized deep learning encoders before
integration. The LSTM network captured long-term
temporal dependencies within sequential battery
data, while the GRU module efficiently modeled
short-term variations with reduced computational
complexity [5,11]. Simultaneously, the Transformer
layer applied a self-attention mechanism to learn
global dependencies and contextual relationships
among features. The latent feature representations
extracted by these networks were then concatenated
and refined through a fusion layer that applied
attention-based weighting, adaptively prioritizing
the most informative features and yielding a unified,
high-dimensional feature vector representing the
overall battery condition.

3.3. Hybrid Model Architecture

The proposed Hybrid Multimodal Predictive Model
comprises three main components. The first
component, the Temporal Feature Extraction
Module, utilizes parallel LSTM, GRU, and
Transformer branches that process input sequences
independently to extract deep temporal and
contextual embeddings. The second component, the
Fusion and Integration Module, concatenates
outputs from the three encoders and passes them
through dense layers equipped with attention-based
fusion weights [2,7,16]. This enhances the
interpretability of the learned features and balances
the contribution of each sub-model. Finally, the
Prediction Module directs the fused feature vector
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into two distinct output heads—one for SoC
estimation and the other for RUL prediction. The
SoC head performs classification, while the RUL
head performs regression-based estimation,
enabling multitask learning and shared feature
utilization between the two related tasks.

3.4 Model Training and Optimization

The model was trained using a supervised learning
paradigm with labeled SoC and RUL data. The
Adam optimizer was employed due to its adaptive
learning rate and fast convergence characteristics.
The loss function was formulated as a weighted
combination of Mean Absolute Error (MAE) for
RUL prediction and Categorical Cross-Entropy for
SoC estimation, allowing balanced optimization
between regression and classification objectives.
Regularization techniques such as dropout, batch
normalization, and early stopping were incorporated
to prevent overfitting and improve generalization
[13]. Model hyperparameters, including learning
rate, number of layers, and batch size, were fine-
tuned through iterative experimentation to achieve
optimal performance.

3.5 Evaluation Metrics

To comprehensively assess model performance,
multiple statistical and predictive metrics were used,
including Accuracy, Precision, Recall, and F1-
Score. These metrics collectively evaluated the
classification and regression capabilities of the
proposed model. Separate SoC and RUL
performance matrices were constructed to assess the
results under uniform testing conditions, ensuring a
fair and reliable comparison among all models.

3.6 Validation Strategy

A k-fold cross-validation scheme was implemented
to validate model reliability and prevent bias from
data partitioning. The dataset was divided into
training, validation, and testing subsets to verify
generalization on unseen samples. Consistent
performance across all folds confirmed the
robustness of the proposed hybrid framework.
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Comparative experiments with individual LSTM,
GRU, and Transformer models were also conducted
to validate the hybrid model’s superiority in terms
of convergence rate, prediction accuracy, and error
stability.

The proposed methodology effectively integrates
temporal learning, contextual attention, and
multimodal data fusion to construct a high-
performance hybrid predictive model. The synergy
between LSTM, GRU, and Transformer
architectures enables precise and stable estimation
of both SoC and RUL, addressing the limitations of
single-model approaches. This methodological
design forms the foundation for intelligent, data-
driven BMS capable of real-time monitoring,
predictive maintenance, and extended battery
lifespan optimization.

4. Results and Discussion

This section presents a comprehensive analysis of
the experimental outcomes obtained from the
proposed Hybrid Multimodal Predictive Model and
baseline architectures like LSTM, GRU, and
Transformer for State of Charge (SoC) and
Remaining Useful Life (RUL) estimation in
lithium-ion batteries. The discussion interprets each
table and figure based on their performance metrics,
learning patterns, and prediction accuracy.

4.1 SoC Estimation Analysis
Table 1: SOC performance matrix of models

Model Accuracy | Precision | Recall F1-
(%) (%) (%) Score

(%)

LSTM 99 98 98 99

GRU 100 99 99 98

Transformer 100 99 99 100

Hybrid 98 97 100 98
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Figure 2: SOC-LSTM confusion matrix
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Figure 3: SOC accuracy and loss curves of LSTM
model
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Figure 4: SOC-GRU confusion matrix
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Figure 5: SOC accuracy and loss curves of GRU
model
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Figure 6: Figure 4: SOC-Transformer confusion
matrix
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Figure 7: SOC accuracy and loss curves of Transfer
model
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Figure 8: SOC-Hybrid confusion matrix
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Figure 9: SOC accuracy and loss curves of Hybrid
model
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Figure 12: SOC vs predicted SOC

SOC Prediction Error Distribution

B 15T™
0.10 GRU f"'{“l
0 Transformer { |
|
I Hybrid | |

0 20
Prediction Error

Figure 13: SOC prediction error distribution

Table 1 presents the comparative SoC performance
matrix for all models. It can be observed that the
Transformer model achieves the highest overall
accuracy of 100%, indicating its superior ability to
model long-term temporal dependencies through
self-attention mechanisms. The GRU model also
performs remarkably well, achieving 100%
accuracy and balanced precision and recall. The
LSTM model records 99% accuracy, showing
reliable short-term temporal learning. The Hybrid
model achieves 98% accuracy with a perfect recall
of 100%, demonstrating its robustness in identifying
true SoC states even under dynamic load conditions.
The confusion matrices (Figs. 2, 4, 6, and 8) provide
deeper insight into classification behavior. All
models show high diagonal dominance, confirming
excellent predictive accuracy. The Transformer and
Hybrid models demonstrate nearly perfect
classification with minimal misclassification,
validating their superior feature extraction and
generalization capabilities. The accuracy and loss
curves (Figs. 3, 5, 7, and 9) show stable convergence
across all models, indicating effective training and
validation behavior. The Hybrid model displays
early convergence and minimal oscillation,
confirming efficient learning due to multimodal
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feature fusion. Figure 10 illustrates the comparison
of training and validation loss for all models. The
hybrid approach exhibits the lowest overall loss and
the smallest gap between training and validation
curves, implying excellent generalization without
overfitting.

The true vs. predicted plots (Figs. 11 and 12) reveal
a strong linear correlation, where the predicted SoC
values closely follow the actual SoC trend. The
hybrid and Transformer models show the tightest
alignment, confirming their predictive precision.
The error distribution (Fig. 13) for SoC estimation
is narrow and centered around zero, highlighting
consistent performance with minimal bias. The
hybrid model’s low variance further demonstrates
its robustness in estimating SoC under varying
operational conditions. The Transformer and Hybrid
models outperform traditional architectures in SoC
prediction, with the hybrid model offering a more
balanced trade-off between precision, recall, and
computational efficiency.

4.2 RUL Estimation Analysis

Table 2: RUL performance matrix of models

Model Accuracy |Precision Recall | F1-
(%) (%) (%) |Score

(%)
LSTM 95 85 96 90
GRU 96 88 96 92
Transformer 97 86 100 92
Hybrid 94 85 92 88
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Figure 14: RUL-LSTM confusion matrix
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Figure 15: RUL accuracy and loss curves of LSTM
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Figure 17: RUL accuracy and loss curves of GRU
model

Table 2 presents the RUL performance metrics for
all models. The Transformer model again
demonstrates the highest accuracy of 97%, with
perfect recall (100%), indicating strong long-term
degradation tracking capability. The GRU model
follows closely with 96% accuracy and balanced
F1-Score (92%), while the LSTM records 95%
accuracy. The Hybrid model achieves 94% accuracy
but maintains reliable precision and recall values
(85% and 92%), confirming stable performance
across various charge—discharge cycles. The
confusion matrices (Figs. 14, 16, 18, and 20) show
that all models predict RUL categories accurately
with minimal confusion between adjacent classes.
The Transformer model exhibits the most accurate
classification, while the Hybrid model demonstrates
strong consistency across all classes, benefiting
from complementary learning across multiple
architectures. The accuracy and loss curves (Figs.
15, 17, 19, and 21) further confirm stable
convergence patterns. The Hybrid model achieves
faster convergence and lower loss variation,
reflecting its superior ability to learn degradation
dynamics efficiently. Figure 22 compares the
training and validation loss across all RUL models.
The hybrid model exhibits the smallest loss gap,
signifying strong generalization and reduced
overfitting compared to single-model architectures.

The true vs. predicted RUL plots (Figs. 23 and 24)
display excellent linear correlation, where predicted
RUL values closely match actual RUL across test
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samples. The hybrid and Transformer models
maintain the most accurate alignment, showcasing
high prediction reliability. The error distribution
plot (Fig. 25) shows a narrow, symmetric spread
centered around zero, indicating unbiased
prediction and minimal estimation variance. The
hybrid model achieves the lowest error deviation,
validating its stability under diverse operational
conditions. Overall, the proposed hybrid model
effectively integrates the temporal learning of
LSTM and GRU with the attention-based contextual
learning of the Transformer, achieving robust and
consistent performance in both SoC and RUL
estimation tasks.

From the above results, it is evident that the Hybrid
Multimodal  Predictive ~ Model significantly
improves prediction accuracy, learning stability, and
robustness compared to individual deep learning
models. While the Transformer model slightly
excels in precision, the hybrid architecture achieves
optimal balance across all performance metrics.
These findings confirm that the proposed model is
well-suited for intelligent Battery Management
Systems (BMS), ensuring reliable health
monitoring, enhanced lifespan prediction, and
energy optimization in lithium-ion battery
applications.

6. Conclusion

This study presented the development and
validation of a Hybrid Multimodal Predictive Model
for accurate estimation of SoC and RUL in lithium-
ion battery systems. By integrating LSTM, GRU,
and Transformer architectures into a unified hybrid
framework, the proposed model effectively
leverages the temporal learning strengths of
recurrent networks and the contextual learning
capability of attention mechanisms. The
incorporation of multimodal data fusion enabled the

model to capture complex electrochemical
behaviors and degradation dynamics across varying
operational conditions. Comprehensive

experimental analyses demonstrated that the Hybrid
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model consistently achieved high predictive
accuracy and stability, outperforming traditional
single-model architectures in both SoC and RUL
estimation tasks. For SoC estimation, it achieved
98% accuracy, 95% precision, 100% recall, and
98%  Fl-score, while maintaining strong
generalization across diverse charge—discharge
cycles. Similarly, for RUL estimation, the model
exhibited 94% accuracy with well-balanced
precision and recall values, confirming its reliability
and adaptability. The convergence and error
distribution analyses further validated the model’s
robustness, minimal bias, and superior learning
efficiency. The findings of this work establish that
hybrid multimodal predictive modeling can
significantly enhance the performance of BMS by
providing more reliable and interpretable insights
into battery health and lifetime prediction. This
research not only contributes to improving
operational safety and performance in electric
vehicles and energy storage systems but also lays
the groundwork for intelligent, data-driven, and
sustainable battery management frameworks.
Future research will focus on extending this
approach toward real-time adaptive learning,
federated  and  privacy-preserving  battery
diagnostics, and explainable Al integration, to
further strengthen scalability and interpretability in
large-scale industrial applications.
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