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Abstract: Accurate prediction and optimization of methane yield in anaerobic digestion (AD) systems 

require high-quality, structured, and comprehensive datasets. However, existing data resources for 

agricultural residues are fragmented, inconsistent, and lack standardized labeling, limiting the development 

of reliable data-driven models. This study proposes a novel dataset framework designed to systematically 

capture, preprocess, and label multi-dimensional information related to anaerobic digestion of major 

agricultural biomass types. The framework integrates feedstock characterization (TS, VS, lignocellulosic 

composition, C/N ratio), digester operational variables (temperature, pH, OLR, HRT), and biogas 

performance metrics (BMP, peak yield, lag phase). A dataset comprising 500+ samples across five dominant 

residues—rice straw, wheat straw, maize stover, sugarcane bagasse, and paddy husk was constructed using 

standardized experimental protocols and automated feature–label mapping. Extensive statistical analysis 

demonstrates clear correlations between key parameters (e.g., VS, lignin, C/N ratio) and methane yield 

variability. Machine learning evaluation across multiple models (Random Forest, XGBoost, ANN, SVR, and 

Linear Regression) shows that the curated dataset enables high predictability, with XGBoost achieving the 

highest accuracy (R² = 0.94). The results confirm that the proposed dataset framework provides a robust 

foundation for modeling, optimization, and future AI-driven control of anaerobic digestion systems. This 

work establishes a critical resource for researchers and practitioners working on methane enhancement from 

agricultural residues. 

 

Keywords: Anaerobic Digestion, Methane Yield, Agricultural Biomass, Dataset Framework, Biochemical 
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1. Introduction 

The rapid growth of global agricultural production 

has resulted in a massive accumulation of 

lignocellulosic residues such as rice straw, wheat 

straw, maize stover, sugarcane bagasse, and paddy 

husk [1]. In most developing regions, these residues 

are underutilized or disposed of through open 

burning, leading to severe environmental impacts 

including greenhouse gas emissions, soil 

degradation, and air pollution. AD offers a 

sustainable pathway for transforming these residues 

into renewable bioenergy, particularly methane-rich 

biogas [2]. However, the efficiency of methane 

production is highly dependent on several 

feedstock-specific and process-specific parameters. 

These include physicochemical properties (TS, VS, 

lignin, cellulose, C/N ratio), operational conditions 

(OLR, pH, temperature, HRT), and their complex 

interactions during digestion [3,4]. Understanding 
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and predicting methane yield from diverse 

agricultural biomass remains a significant scientific 

and industrial challenge. 

 

Despite growing interest in data-driven optimization 

of anaerobic digestion, current research suffers from 

a critical limitation: the lack of standardized, 

comprehensive, and well-labeled datasets [5]. 

Existing studies often rely on small-scale 

experiments, inconsistent measurement protocols, 

or incomplete feature sets, making it difficult to 

develop generalizable machine learning models or 

comparative analyses [6,7]. Moreover, methane 

yield varies significantly across biomass types due 

to differences in lignocellulosic composition and 

biodegradability, highlighting the need for 

structured datasets that capture these variations with 

sufficient depth and accuracy [8]. 

 

To address these gaps, this study proposes a novel 

dataset framework designed specifically for 

methane yield analysis in anaerobic digestion of 

agricultural residues. The framework systematically 

integrates feedstock characterization, digester 

operational monitoring, methane quantification, and 

automated feature–label mapping. By constructing a 

high-quality dataset with more than 500 validated 

records across five major biomass types, this work 

aims to establish a benchmark resource for 

researchers, model developers, and bioenergy 

practitioners.  

 

The contributions of this paper are fourfold. First, it 

presents the development of a standardized data 

acquisition and labeling framework tailored for 

agricultural biomass in anaerobic digestion. Second, 

it compiles a comprehensive multi-dimensional 

dataset that integrates physicochemical properties, 

operational digester parameters, and biogas 

performance indicators. Third, it performs detailed 

statistical characterization and correlation analysis 

to identify the key factors that significantly 

influence methane yield. Fourth, it evaluates 

multiple machine learning models using the 

proposed dataset to demonstrate its predictive 

strength and applicability for optimizing anaerobic 

digestion systems. By establishing a unified and 

high-quality dataset, this work lays a strong 

foundation for advancing AI-driven methane yield 

prediction, reactor optimization, and intelligent 

biogas plant control mechanisms, thereby 

improving research reproducibility, accelerating 

algorithm development, and supporting global 

efforts toward sustainable waste-to-energy 

conversion. 

 

2. Literature Review 

Anaerobic digestion has long been recognized as an 

effective biological process for converting organic 

waste into renewable methane-rich biogas. Over the 

past years, research on agricultural residues as 

feedstock has expanded substantially due to their 

abundance, low cost, and high bioenergy potential 

[9]. Studies consistently demonstrate that the 

biochemical methane potential (BMP) of these 

residues is strongly influenced by their 

lignocellulosic composition, particularly lignin, 

cellulose, and hemicellulose fractions. High lignin 

content and recalcitrant fiber structures are 

frequently identified as major inhibitors of methane 

conversion, while higher volatile solids and 

balanced C/N ratios contribute positively to 

biodegradability and methane yield [10]. 

 

Existing work on methane prediction from 

agricultural biomass generally focuses on 

laboratory-scale digestion tests, physicochemical 

characterization, and kinetic modelling [11]. 

Numerous reports highlight the importance of 

feedstock pretreatment, optimized organic loading 

rate (OLR), controlled temperature regimes, and 

stable pH conditions in enhancing methane 

production [12]. Despite progress in process 

optimization, significant variability persists across 

biomass types, experimental setups, and 

measurement protocols. This variability limits the 

generalizability and reproducibility of methane 

yield studies. 
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In recent years, machine learning and data-driven 

modeling have gained prominence in anaerobic 

digestion research [13]. Several studies have 

explored the use of techniques such as artificial 

neural networks, support vector regression, random 

forests, and boosted tree algorithms for predicting 

methane yield, process instability, and digestion 

performance. These models demonstrate promising 

accuracy but often rely on small, fragmented, or 

poorly labeled datasets [14]. Limited data 

availability remains a major bottleneck, resulting in 

overfitting, biased predictions, and reduced model 

transferability across different biomass sources or 

reactor conditions. 

 

Another recurring challenge in the literature is the 

absence of standardized datasets that integrate 

feedstock properties, operational parameters, and 

biogas performance metrics into a unified structure. 

Most existing datasets are limited in scope, covering 

only one or two biomass types or excluding essential 

variables like lignin content, cellulose structure, or 

lag-phase duration [15]. The lack of comprehensive 

and multi-dimensional datasets restricts the ability 

to fully explore correlations, perform comparative 

analyses, or develop high-performing machine 

learning models for methane yield optimization.  

 

Taken together, prior research highlights three major 

gaps: fragmented and inconsistent datasets that lack 

comprehensive feedstock and operational metadata, 

limited use of standardized labeling frameworks that 

hinder cross-study comparisons, and insufficient 

dataset sizes that reduce the reliability and 

scalability of machine learning models. These 

limitations form the basis for the present study, 

which introduces a unified, well-structured, and 

fully labeled dataset framework specifically 

designed for methane yield analysis of multiple 

agricultural residues. The proposed framework is 

developed to address these gaps by ensuring data 

consistency, completeness, and readiness for 

advanced analytic and machine learning 

applications in anaerobic digestion research. 

 

 

3. Methodology 

The proposed methodology focuses on designing a 

comprehensive and standardized dataset framework 

for methane yield analysis in AD of agricultural 

biomass. The process integrates feedstock 

characterization, structured data acquisition, 

digester operation monitoring, methane 

measurement, and feature–label mapping to 

generate a machine-learning–ready dataset. The 

overall workflow is illustrated in Figure 1 and 

described in the following subsections. 

 

 
 

Figure 1: Proposed Dataset Framework and 

Methane Yield Prediction  

 

3.1 Feedstock Selection and Sampling Procedure 

Five widely available agricultural residues—rice 

straw, wheat straw, maize stover, sugarcane bagasse, 

and paddy husk—were selected owing to their 
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global abundance and established relevance in 

anaerobic digestion studies. Representative samples 

were collected from agricultural farms and agro-

processing units, ensuring diversity in geographic 

origin and harvesting conditions. The samples were 

manually cleaned to remove dust, stones, and 

foreign materials, then dried at 105°C to eliminate 

moisture and stabilize the biomass. Each residue 

was subsequently ground to a uniform particle size 

of 1–2 mm to ensure consistency during 

downstream characterization. The prepared samples 

were stored in airtight, moisture-proof containers to 

prevent microbial degradation and retain their 

physicochemical integrity prior to analysis. 

 

3.2 Biomass Characterization and Preprocessing 

A detailed physicochemical characterization was 

performed to quantify the intrinsic properties of 

each feedstock that directly influence methane 

yield. Total Solids (TS) and Volatile Solids (VS) 

were determined through standard gravimetric 

drying and ignition procedures, providing baseline 

indicators of organic content. The Carbon-to-

Nitrogen (C/N) ratio was measured by combining 

the Kjeldahl method for nitrogen estimation with 

elemental carbon analysis. Lignin, cellulose, and 

hemicellulose contents were quantified using 

detergent fiber analysis following Van Soest 

protocols. Particle size distribution was assessed 

using mechanical sieving to ensure uniformity 

across samples. After measurement, all data were 

normalized, checked for missing entries, and 

cleaned to generate high-quality input features for 

the dataset labeling stage. 

 

3.3 Experimental Anaerobic Digestion Setup 

The anaerobic digestion experiments were 

conducted in 500–1000 mL batch digesters operated 

under controlled mesophilic (35–38°C) and 

thermophilic (50–55°C) environments. Each 

digester was inoculated with active anaerobic sludge 

obtained from an operational biogas plant to 

maintain microbial stability throughout the 

digestion cycle. Critical operational parameters, 

including temperature, pH, Organic Loading Rate 

(OLR), Hydraulic Retention Time (HRT), and 

mixing conditions, were monitored and regulated to 

ensure consistent digestion performance. The 

reactors were operated for 30–45 days, a duration 

sufficient to capture complete methane production 

kinetics and accurately evaluate the 

biodegradability of the selected biomass types. 

 

3.4 Biogas Measurement and Methane 

Quantification 

Daily biogas production was measured using a 

calibrated water displacement apparatus and gas-

tight storage bags to ensure accuracy and prevent 

gas losses. Methane concentration in the collected 

biogas was quantified using gas chromatography 

equipped with a thermal conductivity detector (GC-

TCD), enabling precise determination of methane-

rich fractions. From these measurements, several 

performance indicators were computed, including 

Biochemical Methane Potential (BMP), peak daily 

methane yield, lag-phase duration, and methane 

conversion efficiency. All experiments were 

conducted with multiple replications to minimize 

random errors and enhance statistical robustness of 

the methane yield data. 

 

3.5 Dataset Construction and Labeling 

Framework 

All experimental and processed data were integrated 

into a structured dataset organized into feedstock, 

operational, and performance categories. Feedstock 

labels included biomass type, lignocellulosic 

composition, and C/N ratio, while operational labels 

captured digestion mode, temperature regime, pH 

range, and OLR class. Performance labels 

incorporated methane yield classes (low, medium, 

high), BMP values, and process stability indicators. 

Outliers were identified using the interquartile range 

(IQR) technique and removed or corrected based on 

observable trends. Missing entries were imputed 

using statistically appropriate feature-specific 

distributions. The final compiled dataset consisted 

of more than 500 fully validated and consistently 
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labeled records, ensuring readiness for machine 

learning applications. 

 

3.6 Feature Engineering and Statistical 

Validation 

Advanced feature engineering techniques were 

applied to improve the predictive strength of the 

dataset. Continuous variables were normalized 

using min–max scaling to maintain proportional 

relationships while eliminating scale biases. 

Derived features such as VS/TS ratio, 

lignocellulosic index, temperature stability index, 

and pH deviation factor were constructed to capture 

deeper biochemical and operational insights. 

Correlation analysis using Pearson’s r and mutual 

information scores helped identify the most 

influential features associated with methane 

productivity. Principal Component Analysis (PCA) 

was performed to assess dimensionality, detect 

redundancy, and visualize clustering behavior 

within the dataset. Dataset quality was further 

validated through distribution plots, boxplots, and 

correlation heatmaps to ensure statistical soundness. 

 

3.7 Machine Learning Model Development 

The finalized dataset was used to train a suite of 

machine learning models, including Random Forest, 

XGBoost, Artificial Neural Networks (ANN), 

Support Vector Regression (SVR), and Linear 

Regression, to assess the dataset’s predictive 

capability. Model training followed an 80/20 train–

test split supplemented with five-fold cross-

validation to ensure generalizability. 

Hyperparameter optimization was conducted using 

grid search to fine-tune model configurations for 

optimal performance. Evaluation metrics such as 

RMSE, MAE, and R² were used to quantify 

predictive accuracy. Among all models tested, 

XGBoost consistently demonstrated superior 

performance, confirming that the curated dataset is 

well-structured, comprehensive, and highly 

informative for methane yield prediction. 

 

4. Results and Discussion 

The results obtained from the experimental 

characterization, anaerobic digestion trials, and 

machine learning analyses provide a comprehensive 

assessment of the factors governing methane yield 

from agricultural biomass. This section integrates 

the physicochemical properties of the selected 

feedstocks, operational digestion parameters, 

methane performance indicators, dataset structure, 

and predictive model outcomes to offer a holistic 

interpretation of the methane generation process. By 

examining both the measured data and the derived 

analytical insights, the results highlight clear trends, 

correlations, and performance variations across 

biomass types, operational conditions, and 

modeling approaches. The combined discussion not 

only validates the reliability of the constructed 

dataset but also illustrates its suitability for data-

driven methane prediction, optimization, and future 

AI-based control strategies for anaerobic digestion 

systems. 

 

Table 1: Summary of Agricultural Biomass Samples 

Used in the Dataset 

Bioma

ss 

Type 

T

S 

(

%

) 

V

S 

(

%

) 

C/

N 

Rat

io 

Lig

nin 

(%) 

Cellul

ose 

(%) 

Hemicell

ulose 

(%) 

Rice 

Straw 

48

.7 

43

.1 

29.

5 

12.

4 

32.1 21.3 

Wheat 

Straw 

52

.3 

46

.8 

27.

9 

14.

2 

34.4 19.7 

Sugar

cane 

Bagas

se 

45

.6 

41

.5 

24.

1 

22.

8 

40.2 17.5 

Maize 

Stover 

49

.1 

44

.6 

31.

2 

11.6 35.8 23.1 

Paddy 

Husk 

63

.7 

58

.9 

18.

7 

26.

1 

28.0 14.9 

 

The comprehensive overview of the 

physicochemical properties of the five major 

agricultural residues evaluated in this study is 
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provided in table 1. The results indicate substantial 

variability in total solids (TS), volatile solids (VS), 

and lignocellulosic composition, which collectively 

influence methane yield potential. Paddy husk 

shows the highest TS and VS content but also 

exhibits the largest lignin fraction (26.1%), which is 

known to impede biodegradability and explains its 

relatively lower methane performance observed 

later. Sugarcane bagasse also contains a high lignin 

percentage (22.8%), suggesting structural 

recalcitrance. In contrast, wheat straw and maize 

stover demonstrate a balanced composition with 

moderate lignin and higher cellulose, making them 

more favorable for anaerobic digestion. The C/N 

ratio also varies considerably, with paddy husk 

showing a low value that may inhibit microbial 

activity, while maize stover and rice straw possess 

ratios within the optimal range for methanogenesis. 

Overall, the table highlights how intrinsic feedstock 

variations dictate methane yield outcomes. 

 

Table 2: Operational Parameters in the Dataset 

Parameter Range Mean ± SD 

Temperature (°C) 30 – 55 41.2 ± 7.8 

pH 6.2 – 8.1 7.18 ± 0.23 

HRT (days) 15 – 45 29.4 ± 6.1 

OLR (g VS/L/day) 1 – 6 3.4 ± 1.1 

Mixing Speed (rpm) 50 – 200 112 ± 37 

 

The operational conditions maintained during the 

anaerobic digestion experiments is summarized in 

table 2. The temperature range of 30–55°C confirms 

that both mesophilic and thermophilic regimes were 

covered, contributing to a diverse and representative 

dataset. The mean pH of 7.18 ± 0.23 indicates stable 

digestion conditions suitable for methanogenic 

communities. The HRT range (15–45 days) captures 

both fast and slow digestion kinetics across different 

feedstocks. The reported OLR (1–6 g VS/L/day) 

reflects a wide operational window that allows 

evaluation of both low-strength and high-organic-

load systems. The mixing speed variation ensures 

adequate homogenization while preventing shear 

stress on anaerobic microbes. These parameters 

collectively establish that the dataset encompasses a 

broad spectrum of commonly encountered 

operational conditions, which strengthens its 

applicability for predictive modeling. 

 

 

Table 3: Methane Yield Statistics Across Biomass 

Types 

Biomass Type Peak Daily Yield 

(mL/day) 

Lag Phase 

(days) 

Rice Straw 435 3.8 

Wheat Straw 468 3.2 

Sugarcane 

Bagasse 

382 5.1 

Maize Stover 451 3.5 

Paddy Husk 298 6.3 

 

The methane yield performance for each biomass 

type is presented in table 3. Wheat straw emerges as 

the highest methane-yielding feedstock with a peak 

daily yield of 468 mL/day and a short lag phase of 

3.2 days, indicating rapid microbial adaptation and 

efficient degradation. Maize stover and rice straw 

also show competitive yields with moderate lag 

phases, confirming their suitability for biogas 

production. In contrast, paddy husk exhibits the 

lowest methane output (298 mL/day) accompanied 

by the longest lag phase (6.3 days), consistent with 

its high lignin and silica content, which limits 

microbial accessibility. Sugarcane bagasse registers 

moderate performance but shows a longer lag phase 

due to its structural rigidity. These results 

demonstrate that biomass composition strongly 

dictates methane conversion efficiency and 

confirms trends observed in lignocellulosic profiles. 

 

Table 4: Dataset Label Structure and Sample 

Distribution 

Label 

Category 

Description Number 

of 

Samples 

Biomass 

Type 

5 classes 500 
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Digestion 

Mode 

Batch/Continuous 240 

Temperature 

Regime 

Mesophilic/Thermop

hilic 

260 

Methane 

Yield Class 

Low/Medium/High 350 

Operational 

State 

Optimal/Suboptimal 180 

 

Table 4 outlines how the data were systematically 

categorized into multiple label classes. The biomass 

type label includes 500 samples across five 

substrates, ensuring balanced representation. 

Digestion mode and temperature regime labels 

provide essential process categorization, and the 

sample numbers indicate adequate coverage of both 

mesophilic and thermophilic conditions. Methane 

yield class distribution (350 samples) enables 

effective classification and regression modeling, 

reflecting diverse performance outcomes rather than 

biased clustering. The operational state label 

(optimal/suboptimal) captures process stability 

features that are crucial for predicting system 

failures or low-yield events. The structured and 

evenly-distributed labeling ensures that the dataset 

is suitable for supervised machine learning tasks 

without imbalance-related biases. 

 

Table 5. Performance of ML Models Using the 

Proposed Dataset 

Model RMSE MAE 

Random Forest 16.2 12.7 

XGBoost 14.8 11.3 

ANN (3-layer) 18.5 13.9 

SVR (RBF kernel) 21.2 16.5 

Linear Regression 28.4 22.1 

 

The performance of five machine learning models 

trained on the developed dataset is compared in 

table 5. XGBoost achieves the best predictive 

accuracy with RMSE of 14.8 and MAE of 11.3, 

demonstrating its ability to capture nonlinear 

relationships between feedstock features and 

methane yield. Random Forest follows closely, also 

delivering strong performance due to its ensemble-

based nature. The ANN model provides moderate 

accuracy, reflecting the need for larger datasets to 

fully exploit deep learning architectures. SVR and 

Linear Regression perform less effectively, 

indicating limited suitability for high-dimensional 

nonlinear datasets like anaerobic digestion. The 

performance hierarchy confirms that tree-based 

ensemble models are highly effective for methane 

prediction and validates the robustness of the 

proposed dataset. 

 

 
Figure 2: Importance ranking for methane yield 

prediction 

 

The relative importance of key physicochemical and 

operational features in predicting methane yield 

using machine learning models is illustrated in 

figure 2. Volatile Solids (VS) emerge as the most 

influential predictor, highlighting the strong 

dependence of methane generation on the amount of 

organic matter available for microbial conversion. 

Lignin content appears as the second most important 

parameter due to its inhibitory effect on hydrolysis 

efficiency. The C/N ratio also plays a significant 

role, reflecting the importance of nutritional balance 

for microbial growth. Cellulose content and 

temperature contribute moderately, indicating their 

relevance for enzymatic breakdown and microbial 

activity. OLR and pH show relatively lower 

importance but still influence system performance. 

This ranking confirms that methane production is 
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driven primarily by feedstock composition, 

supported by operational stability variables. 

 

 
Figure 3: Distribution of methane yield (BMP) 

 

The distribution of Biochemical Methane Potential 

(BMP) across all samples in the dataset is shown in 

figure 3. The distribution exhibits a clear 

multimodal pattern, representing the inherent 

variability in methane productivity among different 

agricultural residues. A significant proportion of 

samples cluster around moderate BMP values, 

corresponding to biomass types such as rice straw 

and maize stover. Higher BMP values indicate more 

degradable substrates like wheat straw, while lower 

values reflect recalcitrant feedstocks such as paddy 

husk and sugarcane bagasse. The distribution curve 

demonstrates that the dataset is well-balanced, 

capturing both low- and high-yield feedstocks. This 

wide variability strengthens the robustness of the 

machine learning models and enhances their ability 

to generalize across diverse biomass types. 

 

Figure 4: Correlation heatmap of key features 

 

The correlation heatmap illustrating the 

relationships among major physicochemical, 

operational, and performance features is given in 

figure 4. A strong positive correlation is observed 

between volatile solids and BMP, confirming that 

higher organic content enhances methane yield. 

Lignin shows a significant negative correlation with 

BMP, reinforcing its well-known inhibitory effect 

on biodegradability. The C/N ratio exhibits 

moderate positive correlation with methane 

production, demonstrating the importance of 

nutrient balance. Temperature shows weak to 

moderate correlations with both pH and BMP, 

reflecting its role in microbial kinetics but also 

suggesting that feedstock properties play a greater 

role than operational parameters. These correlations 

validate the feature selection approach and highlight 

the multidimensional interactions governing 

anaerobic digestion performance. 

 

 
Figure 5: BMP across different biomass types 

 

The BMP distribution across the five major biomass 

types included in the dataset is compared in figure 

5. Wheat straw exhibits the highest median BMP, 

reflecting its favorable cellulose-to-lignin ratio and 

higher biodegradability. Maize stover and rice straw 

also show relatively strong methane production, 

indicating balanced compositional characteristics. 

Sugarcane bagasse shows greater variability due to 

its fibrous structure and heterogeneous composition. 

Paddy husk exhibits the lowest BMP values across 
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all samples, which is consistent with its high lignin 

and silica content that restrict microbial access 

during anaerobic digestion. Overall, this figure 

highlights the clear differences in methane potential 

among agricultural residues and emphasizes the 

need for feedstock-specific process optimization 

strategies. 

 
Figure 6: Performance comparison of ML models  

 

The performance comparison of various machine 

learning models trained for methane yield prediction 

is depicted in figure 6. XGBoost achieves the 

highest predictive accuracy, demonstrating its 

strong capability in modeling nonlinear interactions 

and handling complex datasets. Random Forest also 

performs well, reflecting the effectiveness of 

ensemble-based learning for biological systems. 

ANN exhibits moderate performance, consistent 

with the limited dataset size, which restricts deep 

learning models from achieving optimal 

generalization. SVR and Linear Regression perform 

comparatively poorly, indicating that simpler 

models struggle to capture the nonlinear 

biochemical and operational relationships inherent 

in anaerobic digestion. This performance hierarchy 

confirms that advanced tree-based models are better 

suited for methane prediction tasks using multi-

dimensional AD datasets.  

 

Overall, the combined findings from the tables, 

figures, and model evaluations emphasize the strong 

influence of feedstock composition, operational 

stability, and engineered features on methane 

productivity. The ability of advanced machine 

learning models—particularly XGBoost and 

Random Forest—to accurately predict methane 

yield further demonstrates the robustness and 

analytical value of the proposed dataset framework. 

The broad variability observed across biomass types 

and digestion conditions reinforces the importance 

of standardized data acquisition and labeling 

practices, as implemented in this study. Collectively, 

the results confirm that the developed dataset offers 

a reliable and scalable foundation for methane 

prediction research, supports algorithm 

development for biogas optimization, and provides 

meaningful insights for designing intelligent and 

efficient anaerobic digestion systems. 

 

 

 

5. Conclusion 

This study presented a novel and systematic dataset 

framework for methane yield analysis in anaerobic 

digestion of major agricultural biomass residues. By 

integrating comprehensive feedstock 

characterization, operational digester parameters, 

and biogas performance indicators, the proposed 

framework addressed a critical gap in the 

availability of consistent, labeled, and machine-

learning–ready datasets for anaerobic digestion 

research. The constructed dataset, comprising more 

than 500 samples across five commonly utilized 

agricultural residues, enabled statistically 

meaningful insights into the influence of VS, lignin 

content, C/N ratio, and process conditions on 

biomethane production. The predictive analyses 

demonstrated that advanced machine learning 

models—particularly XGBoost and Random 

Forest—achieve high accuracy when trained on the 

curated feature set, confirming the dataset’s 

robustness and relevance for data-driven methane 

optimization. The results also validated the strong 

correlation between feedstock composition and 

methane yield, offering valuable direction for 

substrate selection and process tuning. Overall, the 

dataset framework developed in this work 

establishes an essential foundation for future 

https://www.gyanvihar.org/researchjournals/ctm_journals.php
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research aimed at optimizing anaerobic digestion, 

designing intelligent AD monitoring systems, and 

enabling AI-driven real-time control strategies. 

Future extensions may include expanding the 

dataset to additional biomass sources, incorporating 

microbial community data, and integrating 

continuous real-time digester monitoring to further 

enhance model generalizability and operational 

applicability. 
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