

#### SGVU International Journal of Environment, Science and Technology

Journal homepage: https://www.gyanvihar.org/researchjournals/envirmental\_science.php

E-ISSN: 2394-9570

Vol. 11 Issue 2 Page No 55 - 64

#### Review article

# Isolation, Identification and Antimicrobial Susceptibility testing of clinical strains of Salmonella enterica

Saurabh Soni<sup>1</sup>, Gaurav Sharma<sup>1</sup>, Asha Sharma<sup>2</sup>, Neha Kapoor<sup>1\*</sup>

<sup>1</sup>School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, India <sup>2</sup>Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa - 303303, Rajasthan, India \*Corresponding author's e-mail addresses: n29.neha.kapur@gmail.com

### Keywords

# Enteric fever Salmonella enterica Multi-drug resistant Antimicrobial susceptibility testing

#### **Abstract**

Enteric fever, a gastrointestinal disease, triggered by Salmonella enterica infection is considered to be most prevalent and common infectious disease across the globe. The therapeutic regime to cater the Salmonella infection employs administration of antibiotic therapy. However, due to unwarranted exploitation of antibiotics to cater the infection has led to the emergence of resistance genes in S. enterica as a result of mutations in their chromosomal genes. In the current era, the complexity of MDR strains have resulted the need of thorough investigation of MDR clinical strains of Salmonella enterica. In line to this, the present study was based upon isolation and identification of S. enterica from stool samples of patients suffering from typhoid fever and analysis of drug resistance pattern by antimicrobial susceptibility testing (AST). In the present study, 280 stool samples from patients with enteric fever were collected from Sawai madhopur district (Rajasthan) during July 2022 to January 2024. The isolation of Salmonella sp. was carried out using enrichment and selective media viz. Bismuth Sulphite Agar (BSA) and Xylose Lysine Deoxycholate Agar (XLD) followed by biochemical characterization and AST studies by the Kirby Bauer disc diffusion method based on Clinical and Laboratory Standards Institute (CLSI) guidelines. Out of 280 stool samples tested, 268 clinical isolates of S. enterica was isolated and identified by various biochemical tests. In the AST studies, maximum clinical isolates exhibited resistance to Co-trimoxazole, 3rd Generation Cephalosporin (Cefixime), Carbapenems (Imipenem and Meropenem) and Penicillin's

(Amoxycillin/Potassium Clavulanate, Piperacillin/Tazobactam and Ticacillin/Clavulanate). The present study also reports isolation of 2 MDR strains of *S. enterica* whose further identification of genome sequencing studies can provide additional insights over presence of resistance genes to help aid in identification of novel antibiotics/targets to cater the *Salmonella* infection.

#### INTRODUCTION

Enteric fever is recognized as significant public health problem, specially in developing countries where inadequate sanitation and limited access to effective treatment contributes to its persistence (Akbar et al., 2015). It is mainly caused by Salmonella enterica and Salmonella bongori, which are transmitted through the fecal-oral route (Andino and Hanning, 2015). The spread of Salmonella infection is commonly associated with contaminated food sources such as poultry, dairy, and other animal products, leading to substantial economic losses in the food industry (Petri et al., 2008; Ehuwa et al., 2021). According to the World Health Organization (WHO), approximately 16 to 17 million typhoid cases are reported annualy across the globe, resulting in approximately 600,000 deaths (Ayuti et al., 2024). The asperity of a Salmonella eruption is majorly affected by bacterial strain characteristics, serovar distribution, environmental factors, and host susceptibility. Given the rising consumption of poultry products, risk of Salmonella-induced foodborne infections continues to be a critical concern, particularly during seasonal transitions and the monsoon period from June to August (Omwandho & Kubota, 2010; Rahman et al., 2014). The Center for Disease Control and Prevention (CDC) has also highlighted multidrug-resistant S. enterica

infections as a growing global health crisis due to the limited availability of effective antimicrobial agents (Bosch et al., 2016).

A major challenge in combating S. enterica infection is the emergence of antibiotic-resistant strains due to the prolonged and indiscriminate use of conventional antimicrobial agents. Resistance to first-line antibiotics such as ampicillin, chloramphenicol, amoxicillin, and trimethoprimsulfamethoxazole was first reported in the late 1980s. necessitating the adoption of fluoroquinolones as an alternative treatment (Rowe et al., 1997; Rabsch et al., 2001). However, widespread fluoroquinolone resistance-attributed to genetic mutations in DNA gyrase and topoisomerase-IV (gyrA, gyrB, parC, and parE genes) has shifted the focus on third-generation cephalosporins (e.g., ceftriaxone, cefotaxime, ceftazidime, cefixime) and macrolides such as azithromycin (Galimand et al., 2005; Capoor et al., 2007). Despite ongoing efforts, research comprehensive data the antimicrobial on susceptibility profile of S. enterica remains insufficient (Eng et al., 2015). The lack of robust surveillance data and scientific studies on the evolving antimicrobial resistance patterns of S. enterica underscores the need for continuous monitoring and research efforts to develop targeted therapeutic strategies. The present study was undertaken to ascertain the antimicrobial susceptibility pattern of clinical *Salmonella enterica* strains recovered from patients diagnosed with enteric fever in the Sawai Madhopur district, Rajasthan, India. The findings of the work will furnish valuable insights into the actual antibiotic resistance trends of clinical *S. enterica* strains, aiding in the development of effective therapeutic strategies for improved treatment outcomes.

#### **MATERIALS AND METHODS**

# Patient selection criteria and Sample Collection

A total of 280 stool samples from patients with high fever (>100.4 F), a positive widal test (typhi "O" >1:40, typhi "H" >1:40, paratyphi "AH" >1:20 and paratyphi "BH" >1:20) along with symptoms like headache, stomach pain, weakness etc were included in this study. The samples were collected in sterilized containers from different hospitals of Sawai Madhopur district during the period of July 2022 to January 2024. Prior to the sample collection, written consent was obtained from the respective hospitals with Reference No. RX-2022-017, 2022/1168, RX-55-217-2022, CNH/22/103 permitting the utilization of stool samples for research purposes while ensuring patient anonymity and confidentiality. The collected stool samples were transported to Soni Immunology Microbiology & Research Lab, Sawai Madhopur, Rajasthan for further isolation of Salmonella sp. and susceptibility testing.

# Isolation of Salmonella sp.

For the isolation of Salmonella sp. and minimize the risk of the growth of other microbial species, a combination of selective enrichment and selective plating technique was employed as per the International Organization of Standards (ISO) (ISO-6579:2017). Briefly describing, 0.5-1.0 g of stool sample was transferred in 5 ml Selenite F broth for enrichment followed by incubation at 37°C for 24 hours. From the selenite broth enriched culture, 10 µl of loop full culture was streaked over selective Bismuth Sulphite Agar (BSA, Hi-Media) and Xylose Lysine Deoxycholate Agar (XLD, Hi-Media) plates followed by incubation at 37°C for 24-48 hours (Tosisa et al., 2020). The plates were observed for the appearance of colonies and their morphological characteristics. The colonies from BSA and XLD agar plates were picked up and streaked over nutrient agar plates for further biochemical identification.

#### Biochemical Identification

The suspected colonies were subjected to Gram's Staining by employing Gram Stain kit (Himedia) as per the instructions of manufacturer. The stained smears were observed under the FM-200 Microscope, Weswox, India for the presence of Gram-negative bacilli. The isolates were further identified by employing catalase test, oxidase test and IMViC group of biochemical assays (Hossain et al. 2006). The identified multi drug resistant S. strain was re-confirmed enterica by HiSalmonellaTM Identification Kit-KB011 (Himedia) as per the manufacturer instructions (Table 1)

Table 1: Representing Biochemical tests for bacterial identification

| Name of Biochemical     | Procedure                   | Positive Result       | Reference              |
|-------------------------|-----------------------------|-----------------------|------------------------|
| test                    |                             |                       |                        |
| Methyl Red (MR) Test    | 1. Inoculate MR broth       | Red color indicates a | Douglas et al. (1998), |
|                         | with bacterial cultures     | positive result.      | OIE (2000)             |
|                         | under study and incubate    |                       |                        |
|                         | at 37°C for 24 hours.       |                       |                        |
|                         | 2. Add a few drops of       |                       |                        |
|                         | methyl red indicator.       |                       |                        |
| Voges-Proskauer (VP)    | 1. Inoculate VP broth with  | Pink or red color     | Douglas et al. (1998), |
| Test                    | bacterial cultures under    | indicates a positive  | OIE (2000)             |
|                         | study and incubate at 37°C  | result.               |                        |
|                         | for 24 hours.               |                       |                        |
|                         | 2. Add 3 drops of creatine  |                       |                        |
|                         | solution, 2 drops of α-     |                       |                        |
|                         | naphthol, and 3 drops of    |                       |                        |
|                         | КОН.                        |                       |                        |
| Triple Sugar Iron (TSI) | 1. Streak and stab the      | Yellow color change   | Douglas et al. (1998), |
| Test                    | bacterial colony into TSI   | indicates a positive  | OIE (2000)             |
|                         | agar slant and incubate at  | result.               |                        |
|                         | 37°C for 24 hours.          |                       |                        |
|                         | 2. Observe color changes    |                       |                        |
|                         | in the slant and butt.      |                       |                        |
| Simmons Citrate Test    | 1. Streak bacterial culture | Blue color indicates  | Rahman et al. (2019)   |
|                         | on Simmons Citrate agar     | a positive result.    |                        |
|                         | slant.                      |                       |                        |
|                         | 2. Incubate at 37°C for 24  |                       |                        |
|                         | hours.                      |                       |                        |
| Motility Indole Urea    | 1. Streak bacterial colony  | Pink slant indicates  | Rahman et al. (2019)   |
| (MIU) Test              | on MIU agar slant.          | urease-positive; red- |                        |
|                         | 2. Incubate at 37°C for 24  | cherry ring for       |                        |
|                         | hours.                      | indole test.          |                        |
|                         | 3. Add Kovacs reagent for   |                       |                        |
|                         | the indole test.            |                       |                        |

susceptibility of Salmonella isolates following Clinical and Laboratory Standards Institute (CLSI) guidelines. Colonies of S. enterica isolated from BSA agar were spread evenly over the entire surface of Mueller Hinton agar (MHA) plates with the help of a swab stick. A panel of antibiotics was placed on lawn culture of the test organism and incubated at 370C for 15 hours or overnight (Wayne 2011). The antibiotic panel of PBL Bio-Disc includes, amikacin (30 mcg), 20/10 amoxicillin/clavulanic acid mcg), ampicillin/sulbactam (10/10 mcg), azithromycin (15 mcg), cefixime (5 mcg), cefotaxime (30 mcg), cefpodoxime (10 mcg), ceftazidime (30 mcg). ceftriaxone (30 mcg), ciprofloxacin (5 mcg), chloramphenicol (30)co-trimoxazole mcg), (1.25/23.75 mcg), gentamicin (10 mcg), imipenem (10 mcg), kanamycin (5 mcg), levofloxacin (5 mcg), meropenem (10 mcg), nalidixic acid (30 mcg), nitrofurantoin (300 mcg), ofloxacin (5 mcg), piperacillin/tazobactam (100/10)mcg), streptomycin (10 mcg), tetracycline (30 mcg), ticarcillin/clavulanic acid (75/10 mcg), cefdinir (5 mcg), aztreonam (30 mcg), tobramycin (10 mcg). The diameter of the zone of inhibition (ZOI) after incubation was measured and the Zone of employed to determine the antimicrobial Inhibition (ZOI) for each antibiotic was compared to a table based on CLSI guidelines to indicate whether it was 'Resistant', 'Intermediate' or 'Susceptible'. *S. enterica* isolates resistant to three or more antibiotics were classified as multidrug

resistant (MDR) isolates (Wayne, 2011; Rahman et

The Kirby-Bauer disk diffusion method was

#### RESULTS

al., 2019).

Of a total of 280 stool specimens processed, 268 (95.7%) stool specimens were positive for S. enterica growth via appearance of black color and silver color colonies over BSA and XLD agar plate respectively (Figure 1). The identity of these isolates were ascertained by series of biochemical tests followed by confirmation with HiSalmonella identification kit wherein the isolates was found to exhibit positive reaction in MR, TSI, Simmon Citrate test and negative reaction in VP, Urea and indole test as per the characteristics of Salmonella sp. In the confirmatory analysis by HiSalmonella Identification Kit, the isolates were found to exhibit positive reaction among 9 test parameters including MR, Urease, H2S production, citrate utilization, lysine utilization, ONPG, Lactose, Arabinose and Maltose (Table 2).

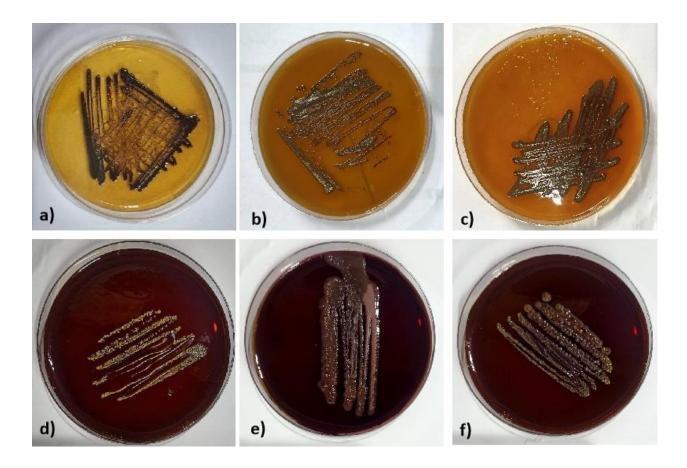



Figure 1: Growth of clinical Salmonella enterica clinical isolates on selective media. (a–c) show isolates grown on Bismuth Sulfite Agar (BSA), while (d–f) show the corresponding isolates on Xylose Lysine Deoxycholate (XLD) agar. (a) and (d): Clinical isolate no. 12, (b) and (e): Clinical isolate no. 35, (c) and (f): Clinical isolate no. 110. Each pair demonstrates colony morphology on both BSA and XLD media, aiding in preliminary identification and differentiation of Salmonella species.

Table 2: Representing HiSalmonellaTM Identification kit KB011 interpretation and results

| No. | Test name           | Procedure of      | Original color  | Test result   | Negative |
|-----|---------------------|-------------------|-----------------|---------------|----------|
|     |                     | test              |                 |               | result   |
| 1   | Methyl Red          | 2 drops of        | Colorless       | Red           | Positive |
|     |                     | Methyl red        |                 |               |          |
|     |                     | indicator         |                 |               |          |
| 2   | Voges Proskauer     | 2 drops of Baritt | Light Yellow    | Slight copper | Negative |
|     |                     | reagent A and B   |                 |               |          |
| 3   | Urease              |                   | Orangish Yellow | Pink          | Positive |
| 4   | H2S production      |                   | Orangish Yellow | Brown         | Positive |
| 5   | Citrate utilization |                   | Green           | Blue          | Positive |
| 6   | Lysine utilization  |                   | Light Purple    | Voilet        | Positive |
| 7   | ONPG                |                   | Colorless       | Light Yellow  | Positive |

| 8  | Lactose   | <br>Red | Yellow | Positive |
|----|-----------|---------|--------|----------|
| 9  | Arabinose | <br>Red | Yellow | Positive |
| 10 | Maltose   | <br>Red | Yellow | Positive |
| 11 | Sorbitol  | <br>Red | Pink   | Negative |
| 12 | Dulcitol  | <br>Red | Pink   | Negative |

In the KB disc diffusion assay, the antibiotic susceptibility pattern of clinical *S. enterica* strains displayed very interesting results. The isolated *S. enterica* strains were found to be resistant to broad class of antiobiotics viz. penicillin (amoxicillin/clavulanic acid,

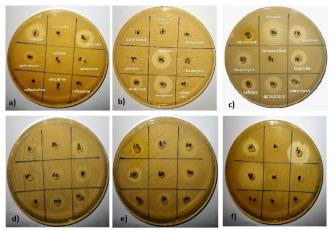



Figure 2: Antibiotic susceptibility testing of clinical Salmonella enterica isolates using the Kirby-Bauer disc diffusion method. Platess (a-c): Clinical isolate no. 35, Plates (d-e): Clinical isolate no. 12, Plate (f): Clinical isolate no. 110. Zones of inhibition were recorded to determine the sensitivity or resistance of isolates against a panel of antibiotics.

piperacillin/tazobactam and ticarcillin/clavulanic acid), carbapenem (meropenem), cephalosporins (cefixime, cefdinir and cefpodoxime), fluoroquinolones (ciprofloxacin, levofloxacin and nitrofurantoin), aminoglycoside (tobramycin) and macrolides (azithromycin) (Figure 2).

Further, the antibiotic susceptibility pattern of all *S*. enterica isolates under study displayed maximum resistance towards cefdinir (98.5 %) followed by cefpodoxime and tobramycin with value of 93.6%. However, nitrofurantoin also displayed resistance among 90.3% isolates and amoxicillin/clavulanic acid among 69.0% isolates (Table 3). On the other hand, of all the isolates under study, 92.6 % isolates found be susceptible were to for ampicillin/sulbactam and 87.3 % isolates for chloramphenicol and tetracycline. while the lowest of susceptibility were observed rates ceftazidime (62.3%), cotrimoxazole (68.7%). Furthermore, two isolates were found to exhibit multidrug resistance in AST studies.

Table-3: Representing antibiotic susceptibility index against S. enterica (n=number of specimens)

| Antibiotic's name           | n Resistant % | n Intermediate % | n Sensitive % |
|-----------------------------|---------------|------------------|---------------|
| Amikacin                    | 35 (13.0%)    | 150 (55.9%)      | 83 (31.1%)    |
| Amoxicillin/Clavulanic acid | 185 (69.0%)   | 33 (12.3%)       | 50 (18.7%)    |
| Ampicillin/Sulbactam        | 02 (0.7%)     | 18 (6.7%)        | 248 (92.6%)   |
| Azithromycin                | 133 (49.7%)   | 83 (30.9%)       | 52 (19.4%)    |
| Cefixime                    | 83 (30.9%)    | 102 (38.2%)      | 83 (30.9%)    |

| Cefotaxime                  | 33 (12.3%)  | 217 (81.0%) | 18 (6.7%)   |
|-----------------------------|-------------|-------------|-------------|
| Cefpodoxime                 | 251 (93.6%) | 12 (4.5%)   | 05 (1.9%)   |
| Ceftazidime                 | 31 (11.6%)  | 70 (26.1%)  | 167 (62.3%) |
| Ceftriaxone                 | 34 (12.7%)  | 201 (75.0%) | 33 (12.3%)  |
| Ciprofloxacin               | 83 (31.0%)  | 51 (19.0%)  | 134 (50.0%) |
| Chloramphenicol             | 01 (0.4%)   | 33 (12.3%)  | 234 (87.3%) |
| Co-trimoxazole              | 68 (25.4%)  | 16 (5.9%)   | 184 (68.7%) |
| Gentamicin                  | 17 (6.3%)   | 148 (55.2%) | 103 (38.5%) |
| Tobramycin                  | 251 (93.6%) | 00 (00%)    | 17 (6.4%)   |
| Imipenem                    | 03 (1.1%)   | 102 (38.0%) | 163 (60.9%) |
| Kanamycin                   | 78 (29.1%)  | 138 (51.5%) | 52 (19.4%)  |
| Levofloxacin                | 115 (42.9%) | 50 (18.6%)  | 103 (38.5%) |
| Meropenem                   | 33 (12.3%)  | 101 (37.7%) | 134 (50.0%) |
| Nalidixic acid              | 31 (11.5%)  | 75 (28.0%)  | 162 (60.5%) |
| Nitrofurantoin              | 242 (90.3%) | 07 (2.6%)   | 19 (7.1%)   |
| Ofloxacin                   | 69 (25.7%)  | 17 (6.3%)   | 182 (68.0%) |
| Piperacillin/Tazobactam     | 66 (24.6%)  | 147 (54.8%) | 55 (20.6%)  |
| Streptomycin                | 05 (1.8%)   | 146 (54.5%) | 117 (43.7%) |
| Tetracycline                | 12 (4.5%)   | 22 (8.2%)   | 234 (87.3%) |
| Ticarcillin/Clavulanic acid | 09 (3.3%)   | 162 (60.4%) | 97 (36.3%)  |
| Cefdinir                    | 264 (98.5%) | 04 (1.5%)   | 00 (00%)    |
| Aztreonam                   | 26 (9.7%)   | 234 (87.3%) | 08 (3.0%)   |

# CONCLUSION AND FUTURE PERSPECTIVE

Several epidemiological studies have highlighted the rising incidence of *Salmonella enterica* globally. The increasing antimicrobial resistance of Salmonella underscores the need for prudent antibiotic use, continuous surveillance, and controlled treatment strategies to prevent multidrug resistance. Our findings indicate a growing pattern of antibiotic resistance in *S. enterica* in Rajasthan which may contribute to the persistence of typhoid

fever through food contamination and public health challanges. This underscores the need for prudent antibiotic use, continuous surveillance, and evidence-based treatment strategies to mitigate the risk of multidrug resistance (MDR). Further research is essential to characterize the molecular mechanisms of resistance and the epidemiological patterns of MDR strains in this region. Wholegenome sequencing can also aid in uncovering the genetic basis of resistance and its transmission dynamics. Additionally, implementing improved

hygiene practices, enhanced food safety regulations, and stringent antibiotic stewardship programs will be crucial in controlling the spread of typhoid fever.

# **FUNDING**

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

#### REFERENCES

- 1. Akbar, A., & Anal, A. K. (2015). Isolation of Salmonella from ready-to-eat poultry meat and evaluation of its survival at low temperature, microwaving and simulated gastric fluids. Journal of food science and technology, 52, 3051-3057.
- Andino, A., & Hanning, I. (2015). Salmonella enterica: survival, colonization, and virulence differences among serovars.
  TheScientificWorldJournal, 2015, 520179.
- 3. Ayuti, S. R., Khairullah, A. R., Al-Arif, M. A., Lamid, M., Warsito, S. H., Moses, I. B., Hermawan, I. P., Silaen, O. S. M., Lokapirnasari, W. P., Aryaloka, S., Ferasyi, T. R., Hasib, A., & Delima, M. (2024). Tackling salmonellosis: A comprehensive exploration of risks factors, impacts, and solutions. Open veterinary
- 4. Bosch, S., Tauxe, R. V., & Behravesh, C. B. (2016). Turtle-associated salmonellosis, United
- 5. States, 2006–2014. Emerging Infectious Diseases, 22(7), 1149.
- 6. Capoor, M. R., Nair, D., Deb, M., & Aggarwal, P. (2007). Enteric fever perspective in India:
- 7. emergence of high-level ciprofloxacin resistance and rising MIC to

- cephalosporins. Journal of medical microbiology, 56(8), 1131-1132.
- Douglas, W., Waltman, R., Gast, K., & Mallinson, E. T. (1998). Salmonellosis. A laboratory
- 9. manual for the isolation and identification of avian pathogens. American Association of
- 10. Avian Pathologists, Kenett Square, 4-14.
- 11. Ehuwa, O., Jaiswal, A. K., & Jaiswal, S. (2021). Salmonella, Food Safety and Food Handling Practices. Foods (Basel, Switzerland), 10(5), 907. https://doi.org/10.3390/foods10050907 journal, 14(6), 1313–1329.
- 12. Eng, S. K., Pusparajah, P., Ab Mutalib, N. S., Ser, H. L., Chan, K. G., & Lee, L. H. (2015). Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Frontiers
- 13. in Life Science, 8(3), 284-293.
- 14. Galimand, M., Sabtcheva, S., Courvalin, P., & Lambert, T. (2005). Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn 1548. Antimicrobial agents and chemotherapy, 49(7), 2949-2953.
- 15. Manual, O. I. E. (2000). Manual of standards for diagnostic tests and vaccines. Office International Des Epizooties.
- 16. Merchant, I. A., & Packer, R. A. (1956). Veterinary bacteriology and virology. In Veterinary bacteriology and virology (pp. viii-850).
- 17. Omwandho, C. O., & Kubota, T. (2010). Salmonella enterica serovar Enteritidis: a mini-

- review of contamination routes and limitations to effective control. Japan Agricultural
- 18. Research Quarterly: JARQ, 44(1), 7-16.
- Petri, W. A., Miller, M., Binder, H. J., Levine,
   M. M., Dillingham, R., & Guerrant, R. L.
   (2008). Enteric infections, diarrhea, and their impact on function and development. The
- 20. Journal of clinical investigation, 118(4), 1277-1290.
- 21. Rabsch, W., Tschäpe, H., & Bäumler, A. J. (2001). Non-typhoidal salmonellosis: emerging problems. Microbes and infection, 3(3), 237-247.
- 22. Rahman, B. A., Wasfy, M. O., Maksoud, M. A., Hanna, N., Dueger, E., & House, B. (2014).
- 23. Multi-drug resistance and reduced susceptibility to ciprofloxacin among Salmonella enterica serovar Typhi isolates from the Middle East and Central Asia. New microbes and new infections, 2(4), 88-92.

- 24. Rahman, M. A., Ahmad, T., Mahmud, S., Barman, N. C., Haque, M. S., Uddin, M. E., & Ahmed, R. (2019). Isolation, identification and antibiotic sensitivity pattern of Salmonella spp. from locally isolated egg samples. Am. J. Pure Appl. Sci, 1(1), 1-11.
- 25. Rowe, B., Ward, L. R., & Threlfall, E. J. (1997). Multidrug-resistant Salmonella typhi: a worldwide epidemic. Clinical infectious diseases, 24(Supplement\_1), S106-S109.
- 26. Tosisa, W., Mihret, A., Ararsa, A., Eguale, T., & Abebe, T. (2020). Prevalence and antimicrobial susceptibility of Salmonella and Shigella species isolated from diarrheic children in Ambo town. BMC pediatrics, 20, 1-8.
- 27. Wayne, P. A. (2011). Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing.