

SGVU International Journal of Environment, Science and Technology

Journal homepage: https://www.gyanvihar.org/researchjournals/envirmental_science.php

E-ISSN: 2394-9570

Vol. 11 Issue 2 Page No 28 - 38

Review article

Exploring AIML Techniques for Brain Tumor Analysis Using MRI Imaging: A Comprehensive Review

*Arjan Singh & Anil Pal

Computer Science & Engineering, Suresh Gyan Vihar University, Jaipur, India *Corresponding author's e-mail addresses: arjunsinghcse@gmail.com, anilpalbarala@gmail.com

Keywords

Brain Tumor Classification (BTC), Magnetic Resonance Imaging (MRI), Deep Learning (DL), Convolutional Neural Networks (CNNs), Transfer Learning (TL)

Abstract

Brain tumors are a serious deal when it comes to diagnosis, especially using MRI scans—which, let us be honest, and are kind of tricky to read. Traditional image processing methods and those older machine learning models. Yeah, they have helped a bit, but they often fall short when it comes to picking out tumors accurately. The problem is, MRIs can be noisy or just not super consistent, and that messes with the results. That is where AI and machine learning come in—especially deep learning stuff like Convolutional Neural Networks, for the nerds out there. These models have been stepping up big time in the whole brain tumor detection game. One model in particular, called 'Xception'. Has shown promise with transfer learning—using what it has already learned from one task and applying it to this new one. This write-up dives into how AI and ML are changing the game in medical imaging. It looks at what is working, where we can tweak things to boost accuracy and make the models generalize better, and yeah, it does not shy away from the hard stuff either—like how we still need to make these systems more interpretable, consistent, and, you know, ethically sound. Because it is one thing to build a smart model, but another to make sure it is trustworthy when real lives are on the line.

INTRODUCTION

1.1 Background and Significance of Brain Tumor Analysis Using MRI

Brain tumors represent some of the most critical challenges in clinical neuroscience due to their complex biological behavior and potentially lifethreatening nature. These tumors, whether benign or malignant, can drastically impact cognitive and motor functions depending on their type, size, and location. Early and accurate diagnosis is essential, as it directly influences treatment planning, prognosis, and patient quality of life (Louis et al., 2021).

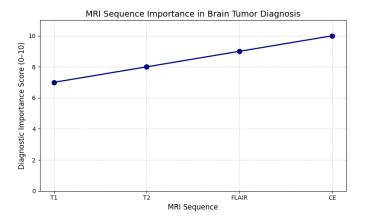


Fig1: Research Publications over the years on Brain Tumor Detection

Magnetic Resonance Imaging (MRI) has emerged as the gold standard in brain tumor detection and analysis as showing in Fig. 1. Owing to its non-invasive nature and superior soft-tissue contrast resolution, MRI facilitates the visualization of tumors in high detail, enabling physicians to assess tumor morphology, edema, necrosis, and structural distortion with precision. This imaging modality provides a multidimensional perspective through various sequences like T1, T2, FLAIR, and contrast-enhanced scans, each offering unique insights into the pathology (Afshar et al., 2019; Pereira et al., 2016).

1.2 Gaps in Conventional Diagnostic Methods

Despite the advanced imaging capabilities of MRI, traditional diagnostic approaches still rely heavily on radiologists' expertise for visual interpretation. This dependence introduces inherent subjectivity and inter-observer variability, particularly when identifying subtle abnormalities or distinguishing between tumor subtypes with overlapping imaging features (Khan et al., 2021). In high-pressure

clinical environments, even experienced radiologists may encounter challenges in ensuring consistent accuracy, especially in early-stage tumors or complex cases involving heterogeneous tissue presentations.

Moreover, biopsy—often considered the definitive diagnostic method—is invasive, time-consuming, and not always feasible depending on the tumor's accessibility the limitations underscore the need for supplementary diagnostic tools that can enhance precision, reduce human error, and provide rapid assessments without compromising patient safety (Rehman et al., 2020).

1.3 Rise of Artificial Intelligence and Machine Learning in Medical Imaging

In recent years, Artificial Intelligence (AI) and Machine Learning (ML) have gained significant momentum in the field of medical imaging. These technologies are capable of analyzing large volumes of imaging data and learning intricate patterns that may not be readily perceptible to the human eye. AI-based systems, particularly those utilizing deep learning architectures such as Convolutional Neural Networks (CNNs), have demonstrated remarkable success in automating tasks like image segmentation, classification, and anomaly detection (Chandio et al., 2021).

When applied to MRI scans, AI models can assist in accurately classifying tumor types, grading malignancy, and even predicting treatment outcomes. The integration of AI into radiological workflows offers the potential to reduce diagnostic delays, improve reproducibility, and support clinical decision-making with quantitative insights. As a result, AI is not merely an adjunct to human expertise—it is becoming an essential tool in the

evolving landscape of personalized and precision medicine (Sajjad et al., 2019).

1.4 Research Goals and Scope

The objective of this research is to explore and critically evaluate current AI and ML techniques applied to brain tumor classification using MRI data. This study aims to bridge the gap between conventional radiological methods and modern computational approaches by providing a comprehensive analysis of traditional machine learning algorithms and contemporary deep learning models.

Specifically, the paper focuses on:

- Understanding the foundational role of MRI in brain tumor imaging.
- Reviewing common tumor types and their radiographic features.
- Analyzing the evolution of machine learning and deep learning methodologies in tumor classification.
- Highlighting ongoing challenges, such as data scarcity, model interpretability, and clinical integration (Sajjad et al., 2019).

2. MRI-Based Brain Tumor Classification

2.1 Overview of MRI Imaging for Brain Tumor Detection

Magnetic Resonance Imaging (MRI) plays a pivotal role in the early detection, diagnosis, and monitoring of brain tumors. Unlike traditional imaging modalities, MRI offers high-resolution, contrast-rich images of soft tissues, enabling clinicians to observe structural and pathological changes in the brain without exposure to ionizing radiation (Pereira et al., 2016).

MRI scans are typically obtained in various sequences such as T1-weighted, T2-weighted,

FLAIR (Fluid-Attenuated Inversion Recovery), and contrast-enhanced images. Each sequence highlights different tissue properties, offering complementary insights into the tumor's size, location, edema, necrosis, and involvement of surrounding structures. This rich dataset forms the foundation for both manual radiological assessments and computational analysis through machine learning (ML) and deep learning (DL) techniques (Afshar et al., 2019).

2.2 Types of Brain Tumors and Their MRI Characteristics

Brain tumors are broadly categorized into primary and secondary (metastatic) tumors, and within the primary class, they may be further classified as benign or malignant. The most commonly studied brain tumors in the context of MRI-based classification include gliomas, meningiomas, and pituitary adenomas (Louis et al., 2021).

- Gliomas, especially high-grade variants such as glioblastoma multiforme (GBM), are characterized by irregular borders, heterogeneous signal intensities, and the presence of necrotic or hemorrhagic areas.
 Contrast enhancement often reveals disrupted blood-brain barriers.
- Meningiomas, typically benign, appear as extra-axial masses with well-defined margins.
 They show homogeneous enhancement after contrast administration and often demonstrate a dural tail sign.
- Pituitary adenomas are usually located in the sellar region and can compress surrounding structures such as the optic chiasm. They show variable enhancement patterns and are best visualized using T1-weighted contrast images.

Understanding these characteristic patterns is crucial for automated classification models, which rely on the distinct visual features inherent to each tumor type (Swati et al., 2019).

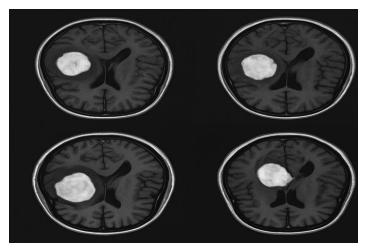


Figure 2: Brain tumor MRI images (OpenAI, 2025.

AI-generated using ChatGPT and DALL·E.

https://openai.com)

2.3 Traditional Machine Learning Approaches for Tumor Classification

In the realm of medical imaging, traditional machine learning techniques have laid the groundwork for automated tumor classification. Methods such as Support Vector Machines (SVM), Random Forests, k-Nearest Neighbors (k-NN), and Decision Trees have been widely applied to handcrafted feature sets extracted from MRI images (Chandio et al., 2021).

These features may include intensity histograms, texture metrics (like GLCM or Haralick features), shape descriptors, and edge information. Once extracted, these features are fed into ML algorithms to train models capable of distinguishing between tumor types or predicting malignancy. Despite their effectiveness, traditional ML approaches often suffer from limitations such as dependence on feature engineering and reduced scalability. The performance of these systems is highly contingent

on the quality and representativeness of the extracted features, making them less adaptable to complex and heterogeneous tumor presentations (Rehman et al., 2020).

2.4 Deep Learning Techniques in Brain Tumor Analysis

In recent years, deep learning has emerged as a transformative approach in medical image analysis, for brain tumor particularly classification. Convolutional Neural Networks (CNNs), owing to to learn hierarchical feature their ability representations directly from raw image data, have outperformed traditional methods in both accuracy and robustness (Sajjad et al., 2019). Models such as VGGNet, ResNet, DenseNet, and U-Net have been employed to segment tumors, classify subtypes, and predict patient outcomes with impressive results. The use of transfer learning and ensemble models has further boosted performance, especially when dealing with limited labeled data (Swati et al., 2019).

Unlike traditional ML models, deep learning systems require minimal manual feature extraction. They can learn complex patterns and subtle visual cues that might be imperceptible to human observers. Moreover, the integration of 3D CNNs and recurrent architectures has enabled temporal and volumetric analysis, providing a more comprehensive understanding of tumor Nonetheless, morphology and progression. challenges such data as scarcity, computational requirements, and the need for interpretability persist. Future research increasingly focused on developing hybrid models that combine the interpretability of traditional methods with the predictive power of deep learning, ensuring both clinical trust and diagnostic efficacy (Khan et al., 2021).

3. Preprocessing and Data Augmentation for MRI Images

3.1 Importance of Preprocessing in Medical Imaging

Preprocessing plays a foundational role in medical image analysis, particularly when dealing with MRI scans used for brain tumor detection and classification. Raw MRI images often suffer from artifacts, noise, intensity inhomogeneities, and irrelevant anatomical structures, all of which can hinder the performance of automated diagnostic systems (Zhou et al., 2021).

Preprocessing ensures that input data is standardized, refined, and optimized before being fed into machine learning (ML) or deep learning (DL) models. In clinical applications, preprocessing is vital not only for improving computational efficiency but also for enhancing diagnostic accuracy. It allows models to focus on clinically relevant features by reducing the influence of background clutter and inconsistencies across different patients or MRI devices. Consequently, this step directly contributes to the robustness, reliability, and generalizability of predictive models (Shen et al., 2017).

3.2 Common Pre-processing Techniques (Noise Reduction, Normalization, Skull Stripping)

Several preprocessing techniques are commonly employed in MRI-based brain tumor analysis to address specific imaging challenges:

 Noise Reduction: MRI images often contain random fluctuations or artifacts due to the imaging process or patient movement. Filters such as Gaussian smoothing, median filtering,

- and anisotropic diffusion are frequently used to suppress noise while preserving important structural boundaries (Tustison et al., 2010).
- Normalization: Due to variability in MRI scanner settings, intensity values may differ significantly between scans. Intensity normalization techniques align these values to a consistent range or mean, making them comparable across datasets. This step is particularly important in multicenter studies and when applying transfer learning models trained on diverse datasets (Nyúl & Udupa, 1999).
- Skull Stripping: Skull stripping involves removing non-brain tissues such as the skull, scalp, and eyes from the image to isolate brain structures. Tools like Brain Extraction Tool (BET) or 3D Slicer automate this process. Accurate skull stripping is crucial to prevent irrelevant regions from influencing the model's learning process (Smith, 2002).

3.3 Data Augmentation Strategies to Enhance Model Performance

Data augmentation is a key strategy used to artificially expand training datasets, which is especially important in medical imaging where annotated data is often limited. By generating diverse variations of existing data samples, augmentation helps prevent model overfitting and improves generalization to unseen cases (Perez & Wang, 2017).

Common data augmentation techniques applied to MRI images include:

• Geometric Transformations: Rotations, translations, flipping, and scaling simulate real-

world variations in patient positioning and tumor orientation.

- Elastic Deformations: These mimic the variability in tissue morphology, making the model more robust to anatomical differences (Ronneberger et al., 2015).
- Intensity Modifications: Adjusting brightness or contrast, or applying Gaussian noise, improves model resilience to differences in image quality.
- Patch Extraction: Dividing the full MRI into smaller patches enhances localized feature learning and increases dataset size. Advanced approaches also utilize synthetic data generation through Generative Adversarial Networks (GANs) to create realistic MRI samples with or without tumors, further enhancing the diversity and quality of training data (Frid-Adar et al., 2018).

4. Deep Learning Models for Brain Tumor Classification

4.1 Xception Model Overview

The 'Xception' model (Extreme Inception) is a convolutional neural network architecture that extends the Inception paradigm by replacing standard Inception modules with depthwise separable convolutions. Proposed by François Chollet in 2017, Xception offers an elegant and efficient way to improve model performance while reducing computational complexity (Chollet, 2017). It has demonstrated superior performance across various image classification tasks, including medical imaging, by enabling the network to learn both spatial and channel-wise features more effectively. In the context of brain tumor classification, the 'Xception' architecture is

particularly attractive due to its ability to capture fine-grained patterns and structural variations in MRI images—traits that are critical when differentiating between subtle tumor subtypes such as low-grade and high-grade Gliomas (Chollet, 2017).

4.2 Architecture and Advantages for Medical Image Analysis

The 'Xception' model is built upon depthwise separable convolutions, which factorize a standard convolution into two operations: a depthwise convolution that filters each input channel separately and a pointwise convolution that combines outputs from the depthwise step (Chollet, 2017). This not only reduces the number of parameters but also improves the model's representational efficiency.

For medical image analysis, especially brain MRI scans, the key advantages of the 'Xception' architecture include:

- Improved Generalization: Fewer parameters help mitigate overfitting, which is crucial when training on limited medical datasets.
- Enhanced Feature Learning: The separable convolutions allow for better learning of localized patterns, such as edges and textures, which are vital in identifying tumor boundaries.
- Transfer Learning Compatibility: Pre-trained 'Xception' models on large datasets (e.g., ImageNet) can be fine-tuned for medical tasks, drastically reducing training time and improving accuracy on domain-specific data (Rajpurkar et al., 2018).

4.3 Training Configuration (Hyperparameters, Loss Functions, Optimization)

For optimal performance in brain tumor classification tasks, the 'Xception' model is typically trained using the following configuration:

- Hyperparameters: The learning rate is often set between 0.0001 and 0.001, with a batch size ranging from 16 to 64. The number of epochs is generally adjusted between 30 and 100, depending on convergence behavior.
- Loss Functions: Categorical cross-entropy is commonly used for multi-class classification problems, providing a robust gradient signal for model training.
- Optimization Algorithms: The Adam optimizer
 is frequently preferred due to its adaptive
 learning rate and momentum capabilities,
 which facilitate faster convergence.
- Regularization Techniques: Dropout layers
 (usually set between 0.3 to 0.5) and L2
 regularization are integrated to prevent overfitting, particularly when dealing with small medical image datasets (Kingma & Ba, 2015).

4.4 Performance Evaluation Metrics (Accuracy, Sensitivity, Specificity, Dice Coefficient)

To comprehensively assess the effectiveness of the 'Xception' model in brain tumor classification, several performance metrics are employed:

- Accuracy: Measures the overall proportion of correctly classified instances. It is a basic yet essential metric for evaluating classification models.
- Sensitivity (Recall): Reflects the model's ability to correctly identify positive cases (e.g., actual tumor presence). High sensitivity is critical in medical contexts to minimize false negatives (Litjens et al., 2017).

- Specificity: Evaluates the model's capability to correctly identify negative cases, thereby reducing false positives.
- Dice Coefficient (F1 Score for Segmentation):

 Particularly useful in segmentation tasks, the

 Dice coefficient assesses the overlap between
 the predicted tumor region and the ground
 truth, providing insight into spatial accuracy
 (Sudre et al., 2017).

5. Research Gaps and Challenges in AIML-Based Brain Tumor Analysis

5.1 Limited Generalization across Diverse Datasets

One of the foremost challenges in applying Artificial Intelligence (AI) and Machine Learning (ML) to brain tumor analysis is the lack of generalization across diverse clinical datasets. Models trained on data from a single institution or imaging protocol often fail to perform consistently when tested on datasets from different scanners, demographic populations, or acquisition parameters. This issue largely stems from variations in image resolution, contrast, and labeling practices, which lead to domain shifts that affect model robustness. Without domain adaptation strategies cross-institutional or validation, these models may struggle to translate effectively into real-world clinical environments (Reyes et al., 2020).

5.2 Lack of Explainability and Clinical Trust

Another significant limitation is the opaque nature of many deep learning models, which often function as "black boxes" without offering interpretable reasoning behind predictions. For clinical adoption, healthcare professionals require transparency and trust in AI systems, especially

when diagnosing life-threatening conditions like brain tumors (Ardila et al., 2019). The lack of Explainability undermines trust and hinders regulatory approval. Efforts such as attention maps, SHAP values, and saliency visualization tools are being developed to address this, but they are not yet universally standardized or fully reliable (Tjoa & Guan, 2020).

5.3 Dataset Limitations: Size, Standardization, and Class Imbalance

High-quality, annotated MRI datasets are crucial for training effective AIML models, yet they remain scarce. Many publicly available datasets, such as BraTS, are limited in size and lack diversity in tumor subtypes and patient demographics, Furthermore, there is often a significant class imbalance, with malignant tumors overrepresented compared to rarer benign lesions. Such imbalances can skew model performance and reduce its ability to generalize across the full spectrum of cases. Additionally, the absence of standardized preprocessing pipelines complicates model reproducibility and benchmarking efforts across studies (Menze et al., 2015).

5.4 High Computational Requirements and Resource Constraints

Training and deploying high-performance deep learning models require substantial computational resources, including GPUs, high memory, and parallel processing capabilities. These requirements present a barrier for resource-constrained healthcare institutions, particularly in low- and middle-income countries. Moreover, real-time inference in clinical settings demands optimized models that can balance accuracy with latency, a trade-off that remains challenging to

achieve without advanced hardware and efficient model compression techniques (Esteva et al., 2021).

6. Conclusion and Future Directions

6.1 Summary of Key Findings

This research highlights the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in the field of brain tumor analysis using Magnetic Resonance Imaging (MRI). MRI remains a gold-standard modality due to its non-invasive nature and high contrast resolution, which enables detailed visualization of brain abnormalities. Traditional ML methods, though effective, often depend heavily on feature engineering and are limited in adaptability. In contrast, deep learning architectures—particularly Convolutional Neural Networks (CNNs) and advanced models like 'Xception'—have demonstrated superior accuracy, automation, and robustness in tumor classification tasks. Despite these advancements, several challenges including data heterogeneity, lack of explainability, and computational barriers persist (Litiens et al., 2017).

6.2 Potential Improvements and Future Research Directions

Future work in this domain can be directed toward several key areas:

- Data Standardization and Multi-Center Collaboration: Establishing large, standardized, and diverse datasets from multiple institutions will enhance model generalizability and help overcome biases (Reyes et al., 2020).
- Explainable AI (XAI): Integrating interpretability frameworks such as Grad-CAM, SHAP, and LIME can improve

- clinicians' trust in AI-based diagnostics (Tjoa & Guan, 2020).
- Hybrid Models: Combining the strengths of traditional ML and deep learning can yield models that balance accuracy with interpretability and efficiency.
- Federated Learning: Implementing decentralized training paradigms can allow institutions to collaborate without compromising data privacy, thereby accelerating model improvement.
- 3D and Temporal Modeling: Enhancing models with 3D CNNs and temporal sequence learning can provide deeper insight into tumor morphology and progression (Sheller et al., 2020).

6.3 Clinical Implications and Real-World Deployment Challenges

The integration of AI in clinical workflows has the potential to significantly augment radiologists' diagnostic capabilities, reduce workload, and improve patient outcomes. However, real-world deployment is contingent upon several critical factors:

- Regulatory and Ethical Compliance: Models
 must undergo rigorous validation and meet
 regulatory standards such as FDA or CE
 approvals to be clinically implemented.
- Clinical Workflow Integration: Seamless incorporation into existing radiology systems is necessary to ensure practical utility without disrupting current diagnostic routines.
- Training and Education: Clinicians and technicians require adequate training to interpret AI-generated insights and utilize them effectively.

 Infrastructure Limitations: High computational needs and the cost of deployment remain barriers, especially in resource-limited settings (Topol, 2019).

REFERENCES

- Afshar, P., Mohammadi, A., & Plataniotis, K. N. (2019). Brain tumor type classification via capsule networks. 2020 IEEE International Conference on Image Processing (ICIP), 3129–3133.
 https://doi.org/10.1109/ICIP40778.2019.9014
 793
- 2. Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., ... & Shetty, S. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. *Nature Medicine*, 25(6), 954–961. https://doi.org/10.1038/s41591-019-0447-x
- Chandio, A. A., Zhang, J., Wang, L., Wang, C., & Rho, S. (2021). Deep learning with MRI for brain tumor diagnosis: Opportunities and challenges. *Neurocomputing*, 452, 605–616. https://doi.org/10.1016/j.neucom.2021.03.091
- 4. Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1251–1258. https://doi.org/10.1109/CVPR.2017.195
- Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2021). A guide to deep learning in healthcare. *Nature Medicine*, 25, 24–29. https://doi.org/10.1038/s41591-018-0316-z

- Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018). Synthetic data augmentation using GAN for improved liver lesion classification. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 289–293. https://doi.org/10.1109/ISBI.2018.8363576
- 7. Khan, H. A., Sohail, A., Zia, T., & Rauf, H. T. (2021). A survey of recent advancements in brain tumor detection using deep learning. *Cancers*, 13(2), 215. https://doi.org/10.3390/cancers13020215
- 8. Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization.

 International Conference on Learning Representations (ICLR).

 https://doi.org/10.48550/arXiv.1412.6980
- Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. *Medical Image Analysis*, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
- Louis, D. N., Perry, A., Wesseling, P., Brat, D. J., Cree, I. A., Figarella-Branger, D., ... & Ellison, D. W. (2021). The 2021 WHO classification of tumors of the central nervous system: A summary. *Neuro-Oncology*, 23(8), 1231–1251.

https://doi.org/10.1093/neuonc/noab106

11. Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., ... & Van Leemput, K. (2015). The multimodal brain tumor image segmentation benchmark (BRATS). *IEEE Transactions on Medical*

- *Imaging,* 34(10), 1993–2024. https://doi.org/10.1109/TMI.2014.2377694
- 12. Nyúl, L. G., & Udupa, J. K. (1999). On standardizing the MR image intensity scale.

 *Magnetic Resonance in Medicine, 42(6), 1072–1081.

 https://doi.org/10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
- 13. Perez, L., & Wang, J. (2017). The effectiveness of data augmentation in image classification using deep learning. *arXiv* preprint *arXiv*:1712.04621.

https://doi.org/10.48550/arXiv.1712.04621

Pereira, S., Pinto, A., Alves, V., & Silva, C. A. (2016). Brain tumor segmentation using convolutional neural networks in MRI images. *IEEE Transactions on Medical Imaging*, 35(5), 1240–1251.

https://doi.org/10.1109/TMI.2016.2538465

- 15. Rajpurkar, P., Irvin, J., Ball, R. L., Zhu, K., Yang, B., Mehta, H., ... & Ng, A. Y. (2018). Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. *PLoS Medicine*, *15*(11), e1002686. https://doi.org/10.1371/journal.pmed.1002686
- 16. Reyes, M., Meier, R., Pereira, S., Silva, C. A., Dahlweid, F. M., von Tengg-Kobligk, H., ... & Wiest, R. (2020). On the interpretability of artificial intelligence in radiology: Challenges and opportunities. *Radiology: Artificial Intelligence*, 2(3), e190043. https://doi.org/10.1148/ryai.2020190043
- Rehman, A., Naz, S., Razzak, M. I., Akram, F.,
 & Imran, M. (2020). Deep learning-based brain tumor classification system using MRI images.

- Sensors, 20(9), 2674. https://doi.org/10.3390/s20092674
- 18. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. *International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)*, 234–241. https://doi.org/10.1007/978-3-319-24574-4 28
- 19. Sajjad, M., Khan, S., Muhammad, K., Wu, W., Ullah, A., & Baik, S. W. (2019). Multi-grade brain tumor classification using deep CNN with extensive data augmentation. *Journal of Computational Science*, *30*, 174–182. https://doi.org/10.1016/j.jocs.2018.12.003
- 20. Sheller, M. J., Reina, G. A., Edwards, B., Martin, J., & Bakas, S. (2020). Multiinstitutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation. Brainlesion: Multiple Sclerosis, Stroke and Glioma. Traumatic Brain Injuries, 92–104. https://doi.org/10.1007/978-3-030-46643-5 9
- 21. Shen, D., Wu, G., & Suk, H. I. (2017). Deep learning in medical image analysis. *Annual Review of Biomedical Engineering*, 19, 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442
- 22. Smith, S. M. (2002). Fast robust automated brain extraction. *Human Brain Mapping*, *17*(3), 143–155. https://doi.org/10.1002/hbm.10062
- 23. Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S., & Cardoso, M. J. (2017). Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. *Deep Learning in Medical Image Analysis and*

- Multimodal Learning for Clinical Decision Support, 240–248. https://doi.org/10.1007/978-3-319-67564-0 28
- 24. Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. *Nature Medicine*, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7
- 25. Tjoa, E., & Guan, C. (2020). A survey on explainable artificial intelligence (XAI): Toward medical XAI. *IEEE Transactions on Neural Networks and Learning Systems*, 32(11), 4793–4813. https://doi.org/10.1109/TNNLS.2020.3027314
- 26. Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 bias correction. *IEEE Transactions on Medical Imaging*, 29(6), 1310–1320. https://doi.org/10.1109/TMI.2010.2046908
- 27. Swati, Z. N. K., Zhao, Q., Kabir, M., et al. (2019). Brain tumor classification for MR images using transfer learning and fine-tuning. *Computerized Medical Imaging and Graphics*, 75, 34–46. https://doi.org/10.1016/j.compmedimag.2019.
- 28. Zhou, S. K., Greenspan, H., Davatzikos, C., Duncan, J. S., Van Ginneken, B., Madabhushi, A., ... & Summers, R. M. (2021). A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proceedings of the IEEE, 109(5), 820–838. https://doi.org/10.1109/JPROC.2021.3060483