

Available on https://www.gyanvihar.org/researchjournals/ctm_journals.php SGVU International Journal of Convergence of Technology and Management E-ISSN: 2455-7528 Vol.10 Issue 2 Page No 66-78

Review of Decision-Making Support Systems for Social Media Data

¹ Sunita Rajesh Ballal, ² Dr. Paresh Jain ¹ Research Scholar, Suresh Gyan Vihar University, Jaipur ² Assistant Professor, Suresh Gyan Vihar University, Jaipur Email: sunitaballal1@gmail.com, paresh.jain@mygyanvihar.com

Abstract: This review explores the current landscape of decision-making support systems (DMSS) for social media data, emphasizing the potential of these systems to offer valuable insights across various domains when social media data is properly analysed. By systematically examining existing literature on DMSS tailored for social media data, the review highlights methodologies, applications, and effectiveness, and identifies key trends, challenges, and future directions. Significant advancements have been noted in data processing techniques, the integration of machine learning algorithms, and the growing importance of real-time data analysis. Despite these advancements, issues such as data privacy, system scalability, and the need for comprehensive evaluation metrics remain critical. Social media, as a dynamic and fast-moving domain, serves not only as a communication medium but also as a platform for information exchange. Sentiments expressed across social media can be systematically converted into decisionmaking support. The study reviews decision support systems on social media, examining structural issues and data techniques for extracting valuable information. Online databases such as Google Scholar, IEEE, Elsevier, Research Gate, and Semantic Scholar were utilized to source articles published from 2010 to 2024. The search focused on keywords like Social Media Data, Decision-Making Support of social media. The review presents a systematic examination of DMSS using three research questions, revealing a continuity from social media systems to decision-making support systems. Various fields utilize social media data to inform significant business or organizational decisions, employing diverse scientific methods and case studies. This research aims to contribute to academic understanding and advancement of decision support systems leveraging social media data.

Keywords: Decision-Making Support Systems, Social Media Data, Literature Review, Academic Research

1. INTRODUCTION

The proliferation of social media platforms has transformed the way information is generated, shared, and consumed. These platforms produce an immense volume of data daily, encompassing a wide range of user-generated content, from personal opinions and experiences to professional insights and news [1]. Analyzing this vast amount of data can uncover valuable insights, making it a critical resource for decision-making processes in various domains such as marketing, healthcare, politics, and crisis management.

Decision-making support systems (DMSS) have emerged as vital tools to harness the potential of social media data. These systems employ sophisticated algorithms and data processing techniques to analyze, interpret, and present data in a way that supports informed decisionmaking. By integrating machine learning, natural language processing, and data visualization, DMSS can transform raw social media data into actionable intelligence [2]. This review systematically examines the existing literature on DMSS for social media data, aiming to provide a comprehensive understanding of current methodologies, applications, and the effectiveness of these systems. The review identifies key trends and challenges in the field and discusses potential future directions for research and development [3].

Social media's dynamic nature and rapid information exchange present unique challenges and opportunities for DMSS. Structural issues, data privacy concerns, system scalability, and the need for robust evaluation metrics are some of the critical aspects that need

to be addressed. Moreover, the ability to process real-time data and provide timely decision support is increasingly important. The study utilizes a range of online academic databases, including Google Scholar, IEEE, Elsevier, Research Gate, and Semantic Scholar, to source relevant articles published between 2012 and 2024. The focus is on identifying research that intersects social media data analysis and decision support systems, using specific keywords such as "Social Media," "Decision Support," and "Decision Support of Social Media."

By presenting a systematic review of DMSS for social media data, this study aims to highlight the current state-of-the-art, identify existing gaps, and propose directions for future research. The ultimate goal is to enhance the effectiveness of decision-making processes across various fields by leveraging the rich, yet complex, data available from social media platforms. Decisionmaking is an essential mechanism for selecting options throughout the problem-solving process [4,5]. A decision support system (DSS) is a computerized program designed to assist decision-makers by leveraging domain-specific knowledge and analytical models. DSS enables the processing of large data volumes, producing outputs through interfaces that significantly benefit professions requiring high-level expertise. By establishing a knowledge base on actions and outcomes, DSS helps individuals make informed decisions by illustrating potential results for intended actions [6]. These systems analyze vast amounts of data, compiling comprehensive information that aids in problem-solving and decision-making. For a DSS to be effective, it must offer a structured, logical, and objective decision-making process. The quality of a DSS is determined by its framing, creativity, clarity, logical reasoning, and actionable commitment [7,8].

With the proliferation of social media platforms like Facebook, Instagram, and Twitter, organizations face the challenge of managing extensive user-generated data. This has led to a growing demand for advanced analytical strategies, such as Social Media Data Analytics. Social media is a dynamic and rapidly evolving domain, accommodating various natural languages used for communication worldwide [9]. It allows people to share a wide range of topics, from personal choices to global issues. This capability makes social media a valuable tool for multinational corporations, medium-sized businesses, nonprofit organizations, and governments. The data transmitted through social media platforms has opened new avenues for understanding consumer perceptions, prompting businesses to develop algorithms for analyzing public opinions and sentiments [10]. This paper compares different methods of decision support focused on social media. Unlike previous studies, which primarily presented findings and methodologies, this research introduces distinct research questions and employs inclusion and exclusion criteria to refine the analysis [11].

This paper is organized into nine key sections: first, the Introduction used; second, a related work, which presents theoretical support for the present research; third, the method; fourth, the discussion of results; fifth, the applications; sixth, the challenges; seventh, the future direction; eighth, the findings; and ninth, the conclusions of this study. This paper is expected to contribute to the academic world concerning literature systems and decision support in social media.

2. RELATED WORK

The development and implementation of decisionmaking support systems (DMSS) for social media data have garnered significant attention in recent years, with numerous studies contributing to this evolving field. This section reviews key contributions and advancements in the literature, focusing on methodologies, applications, and the identified challenges in leveraging social media data for decision support [12,15].

The rise of decision-making support systems (DMSS) tailored for social media data has attracted considerable attention in recent years, signifying a burgeoning area of research and development [16-18]. Various studies have contributed to this domain, showcasing different methodologies and applications. Research has demonstrated the effectiveness of techniques like sentiment analysis and topic modeling in extracting valuable insights from user-generated content on social media. Some studies have proposed hybrid approaches that integrate both supervised and unsupervised learning methods to improve the accuracy of social media data analysis [19-23].

Decision-making support systems (DMSS) have found practical applications in various domains. These systems have been used to assess consumer sentiment and enhance marketing strategies, monitor the spread of infectious diseases to support public health interventions, and analyze social media data to inform political campaigns and potentially influence election outcomes [24,29]. However, the application of DMSS in analyzing social media data comes with ethical considerations, particularly concerning the use of personal information. There are also technical challenges involved, such as processing and storing large volumes of real-time data, which add complexity to the implementation of DMSS. Additionally, there is a recognized need for robust evaluation metrics to assess the performance and reliability of these systems [30-33].

Future improvements in DMSS could include the integration of advanced machine learning algorithms, such as deep learning, to enhance their analytical capabilities. Collaborative research efforts are also crucial for the continuous improvement and advancement of these systems, ensuring they remain effective and relevant in various applications.

3. METHOD

This research employed a systematic literature review methodology, drawing from multiple international publications. The reference searching process comprises two main components: defining research questions and establishing inclusion and exclusion criteria. Research questions guide the objectives of the study, while inclusion and exclusion criteria help filter past research to produce more accurate and relevant results. A limitation of this research lies in the constraints set by these inclusion and exclusion criteria.

The study's objectives are clearly defined, focusing on the publisher, publication year, data collection process, data sources, case selection, and suggested improvements for future research. The 33 articles of literature were reviewed and analysed. The methodology involves several steps:

Keyword Filtering: The initial filtering uses specific keywords such as "DSS," "social media," and "DSS in Social Media," focusing solely on international journals and conferences.

Publication Year: The second filtering criterion is based on the year of publication, ensuring the study remains current. *Citations and Relevance*: Journals with numerous citations are prioritized, while duplicate studies (those with identical titles, subjects, or content) are excluded.

Indexing: The final filtering step involves selecting literature indexed by Scopus or Web of Science, followed by summarizing these works according to the research questions.

This structured methodology ensures a comprehensive review of decision-making support systems (DMSS) for social media data, providing a thorough understanding of the current advancements and identifying areas for future research.

3.1 Research Question

To identify the research question (RQ), certain criteria are considered. Three key research criteria questions are:

Data collection Process: How was the data collected during the research?

Case Selection Process: What case was chosen for each study?

Future Improvement Process: What future improvements are proposed for the method used?

3.2 Inclusion and Exclusion Rules

Specific rules for selecting references are essential to ensure high-quality output in this research. The inclusion and exclusion criteria for selecting eligible papers are as follows:

Time Frame: Only publications from international conferences and journals published in the last seven years

are considered. The most recent reference should be from a paper published after 2021.

Source Indexing: Publications must be from conferences and journals that are internationally indexed and available on Google Scholar, IEEE, Elsevier, Research Gate, and Semantic Scholar.

Keywords: Literature selection and screening are based on the publication year, international indexing, and relevant keywords such as "decision support system" and "social media."

These criteria ensure that the selected references are current, relevant, and of high quality, providing a robust foundation for the research.

4. RESULTS AND DISCUSSION

The literature that is reviewed here consists of four conferences, one book, and twenty-eight journals.

Figure 1: Year wise publications

From Figure 1, one article was published in 2010, two in 2012, one in 2013, two in 2014, two in 2015, one in 2016, one in 2017, one in 2018, four in 2019, three in 2020, nine in 2021, two in 2022, three in 2023, and one in 2024. This distribution means that this paper reviewed and compared the research related to the research question that represents the last decade. How the data was taken in the process of conducting the research will be answered in Table 1.

Table 1: Data collection Process

Ref.	Data collection process
[1]	The study conducted an extensive literature
	review based on 94 papers to analyze social media
	data since 2017. The majority of the analyzed data
	were sourced from Twitter.
[2]	Data was collected from social media platforms,
	focusing on the real-time information shared
	during emergencies
[3]	The data was collected from online reviews,
	utilizing text mining and sentiment analysis
	techniques to extract and structure information
[4]	The research gathered a total of 101 articles from
	the Scopus and Clarivate Analytics Web of
	Science (WoS) databases. Of these, 85 articles

	were selected for analysis using the Bibliometrix tool.
[5]	The data was collected from Twitter using its simple data model and straightforward data access API, focusing on social graph structure,
	sentiment analysis, and threats
[6]	The data was collected through literature review and analysis of various social media applications like Wikipedia, YouTube, Facebook, Second Life, and Twitter to understand their characteristics and differences
[7]	The research utilized articles from Google Scholar, IEEE, Elsevier, ResearchGate, and Semantic Scholar databases, focusing on publications in English from 2012 to 2021. The search was conducted using the keywords "Social Media," "Decision Support," and "Decision Support of Social Media."
[8]	The data set consisted of 3,000 movie reviews and tweets manually labeled by native Hindi speakers into three classes: positive, negative, and neutral
[9]	The research likely involved literature review and analysis of existing decision support systems, social networking platforms, and organizational challenges related to their adoption
[10]	The study selected 57 social media-based business intelligence (BI) research articles from the Web of Science (WoS) database. It compared social media data with other open data sources like gray literature and public government data based on content, collection, updatability, and
[11]	structure. The data was collected by continuously
	monitoring multiple social media channels and collecting users' comments on promotions, products, and services. This data was then analyzed through sentiment analysis to estimate brand reputation and provide feedback on digital marketing campaigns
[12]	The data was collected from social media sites and blogs, focusing on user-generated content such as customer feedback, product suggestions, and brand mentions. Additionally, data from the Brand24 report were incorporated into the analysis
[13]	The research involves surveying prominent related papers and utilizing tools like social media and big data analysis to develop the proposed business intelligence framework.
[14	The data was collected by synthesizing information from various sources regarding Internet usage by American travelers, focusing on both traditional channels like online travel agencies and emerging channels such as social media
[15]	Data was collected through stakeholder participation in a multi-criteria decision-making process, using the Fuzzy-hierarchical analytical process (FAHP) to aggregate weights and

	applying the Kendall correlation technique to
	analyze stakeholder opinions
[16]	The study conducted a systematic literature
	review from 2012 to 2022 following PRISMA
	guidelines to examine the impact of social media
	on the knowledge management process.
[17]	Data was collected from the Scopus database,
	where a search was conducted to identify relevant
	publications. The VOSviewer software was used
1101	to perform an analysis of word co-citation
]18]	Data was collected from social media, focusing
	Significant events were extracted as notential
	outcomes of these actions
[19]	The data was collected from social media sites,
	focusing on written texts in various Arabic
	dialects. Researchers and data scientists gathered
	these texts to analyze sentiments expressed by
[20]	users
[20]	The data was collected from Twitter, focusing on
	Sentiment analysis tools and the Naïve Paves
	Theorem were employed to evaluate the collected
	tweets
[21]	The data for the research was collected from
	social media platforms, focusing on unstructured
	text that expresses human sentiments. The
	analysis involves using machine learning and
	natural language processing techniques to process
[22]	The data used in the research was obtained from
[22]	a labeled dataset publicly available on Kaggle.
	consisting of tweets and their associated
	sentiment labels
[23]	Future improvements may involve refining the
	decision support model (DSM) by incorporating
	additional factors or parameters related to waste
	management in Indonesia. Additionally,
	logic and mathematics could further enhance the
	accuracy and effectiveness of the mode
[24]	The research likely involved collecting data from
	previous studies and literature reviews in the
	fields of online social networking and decision
	support systems. This data would include
	information on various concepts and their
[26]	influence on decision-making processes
[25]	Data was collected in real-time from lwitter
	nrocessing techniques to select relevant tweets
	about earthquakes
[26]	Data was collected using focused Twitter
	crawling, which involves retrieving and filtering
	tweets relevant to the crisis. The tweets were then
	analyzed for trustworthiness, geo-parsed, and
	classified in multiple languages
[27]	Data was collected from online discussion forums
I	trequented by vehicle enthusiasts. Text mining

	techniques were applied to extract relevant
	information about vehicle defects
[28]	The data was likely collected through a
	combination of methods, including qualitative
	analysis of program descriptions, user
	testimonials, and company communications.
	Additionally, researchers may have conducted
	interviews or surveys with program participants
	and analyzed publicly available data on the
	programs' activities
[29]	The data for this research was likely collected
r_> 1	from various literature sources, including
	academic papers, journals, and conference
	proceedings, which have proposed SVM-based
	intrusion detection systems. Additionally.
	datasets used in those studies may have been
	referenced and analyzed to provide empirical
	evidence of the effectiveness of SVM classifiers
	in intrusion detection
[30]	The data for this research was likely collected
r1	through surveys, interviews, or expert
	consultations to gather insights and opinions on
	the integration of websites with social media
	platforms. The Delphi method, known for its
	iterative and structured approach to expert
	consensus-building, might have been employed
	to collect and analyze data from multiple rounds
	of questionnaires or discussions. Additionally,
	Fuzzy Set Theory and Analytic Hierarchy Process
	may have been used to process and analyze the
	collected data to prioritize and aggregate
	dimensions for social media platform selection
[31]	The data for this research was likely collected
	from social media platforms, which serve as a rich
	source of information on tourism trends. Various
	types of user interactions on social media, such as
	reviews, stories, likes, forums, blogs, and
	feedback, were likely collected and analyzed to
	determine tourism trends. Fuzzy-AHP methods
	were then applied to rank these trends based on
	the collected data
[32]	Data was collected from the social network
	channel Instagram using the Octoparse API as a
	web data extraction tool. Specifically, 12,754
	posts from January 1, 2019, were analyzed to
	extract relevant information for the decision
	support system
[33]	The data was likely collected through various
_	experimental or observational studies where
	samples were obtained from different groups or
	conditions. These samples were then analyzed
	using the analysis of variance (ANOVA)
	procedure to assess differences in means

Based on Table 1, data sources varied from multiple resources. However, we found that six are several common data sources used (more than one paper used the same dataset): 8 papers used Twitter, 4 papers used Facebook, 3 papers used Instagram, 3 papers used Yelp, 2 paper used Trip Advisor, 3 paper used Business Fundas, and 4 papers used discussion forums. Digital location-based services (LBS), such as Yelp, Google Maps, Foursquare, and Trip Advisor, are smartphone and web applications that aggregate and distribute data about real-world amenities, usually contributed by volunteers [25].

Table 2: Case Selection

Ref.	Case selection process
[1]	The research focused on various domains
	including marketing, hospitality and tourism,
	disaster management, and disruptive technology.
	Twitter emerged as the predominant source of
	social media data in the majority of the studies.
[2]	The research focused on emergency situations
	where social media was used by citizens and
	authorities to communicate and exchange
507	information
[3]	The research focused on the tourism industry,
	particularly small firms, analyzing their need to
	monitor and understand online consumer
E41	The feave of the reasonab was an understanding
[4]	the adoption of sentiment analysis methods in
	organizations when making decisions Various
	business sectors were examined including supply
	chain and financial sectors, with a particular
	emphasis on areas within the company where
	sentiment analysis methods are most applied.
[5]	The research examined three major areas: the
	structure and properties of the Twitter social
	graph, sentiment analysis, and threats such as
	spam, bots, fake news, and hate speech
[6]	The research focused on clarifying the concept of
	"Social Media" and distinguishing it from related
	terms such as Web 2.0 and User Generated
	Content. It also provided a classification of Social
[7]	Media applications into specific categories
[/]	The study reviewed decision support systems on
	techniques to extract valuable information
	Various fields where social media data supports
	decision-making such as business and
	organizational contexts, were analyzed.
[8]	The research focused on sentiment analysis (SA)
L - J	of text in Hindi, particularly addressing issues
	like Romanized or abbreviated text and spelling
	variations
[9]	The case selected for the research is the shifting
	of decision support systems towards social
	networking, based on Web 2.0 and Semantic Web
	technology
[10]	The research focused on evaluating the
	applicability of social media data in BI research
	and provided a systematic review of primary
	research articles in this domain. It analyzed the

	selected articles using three research questions
	regarding data, methodologies, and results.
[11]	The research focused on developing a Decision
	Support System (DSS) to support companies and
	enterprises in managing promotional and
	marketing campaigns on multiple social media
	channels with a particular emphasis on
	restaurants and consumer electronics online shops
[12]	The research focused on developing a Business
	Decision Making System (BDMS) that utilizes
	social media data analytics to support husiness
	decision making. The RDMS concentrates on
	marketing and aims to provide valuable insights
	from social data
[12]	The state former on firmer in a next new lowing
[13]	The study locuses on firms in a post-pandemic
	phase, aiming to enhance their performance and
	productivity inrough the proposed business
54.43	intelligence framework.
[14]	The research examined the Internet usage patterns
	of American travelers, highlighting differences
	between traditional online consumers and those
	adopting new information sources and transaction
	channels, particularly among Generation Y
	travelers
[15]	The research focused on the public transport
	development decisions in Amman, Jordan,
	examining the effects of the COVID-19 pandemic
	on public transportation service quality and
	stakeholder needs
[16]	The research analyzed the application of social
	media in various domains, including healthcare,
	marketing, politics, tourism, and event
	management, focusing on knowledge sharing,
	creativity, productivity, trust-building, and
	cognitive capital.
[17]	The research focused on identifying and
	analyzing the relationships between Big Data and
	Decision Support Systems across different study
	areas such as logistics, health, social media,
	sustainable development, machine learning,
	analytical techniques, and decision-making
	processes
[18]	The research involves the development and
	testing of an algorithm that mines pros and cons
	from social media data in response to action
	queries, evaluated on two data sets
[19]	The research focuses on the sentiment analysis of
-	Arabic dialect texts from social media,
	contrasting it with the more commonly analyzed
	Modern Standard Arabic
[20]	The case selected for this research is the waste
	management situation in Indonesia. The study
	analyzed tweets to gauge public sentiment and
	identify areas requiring improvemen
[21]	The case involves sentiment analysis of social
[[]	media data to determine whether reviews and
	opinions are positive, negative, or neutral
	Various machine learning algorithms, such as
	Naïve Bayes, K-nearest method Random Forest
L	

	Support Vector Machine, and Deep Learning,
	were employed for classification
[22]	The case selected for this research is sentiment
	analysis of tweets on Twitter. The study focuses
	on classifying tweets into positive and negative
	sentiments using supervised machine learning
[22]	The same selected for this recently is reset
[23]	The case selected for this research is waste
	address waste related issues by analyzing
	sentiment data from Twitter and developing a
	decision support model (DSM) to propose
	actionable solutions
[24]	The case selected for this research is the
[24]	exploration of the relationship between online
	social networking and decision support systems.
	The study aimed to identify concept clusters
	related to these fields and analyze their
	contribution to decision-making phases
[25]	The research focused on detecting and assessing
	earthquake damage in Italy by analyzing tweets
	and comparing the results with official data from
	the National Institute of Geophysics and
	Volcanology (INGV)
[26]	The case study focused on integrating the
	TweetComp1 application into a Tsunami early
	warning system, demonstrating its use for
	improving situational awareness during mass
50.53	emergencies
[27]	The research focused on identifying,
	categorizing, and prioritizing vehicle defects
	mentioned in online discussion forums to support
[20]	The age calested for this research is the
[20]	The case selected for this research is the
	and Google Mans' Local Guides program These
	programs represent two major location-based
	services in the United States and provide insight
	into how volunteer ton-contributor programs are
	utilized to ensure access to reliable spatial data
[29]	The case selected here is the investigation and
L ' J	comprehensive study of SVM-based intrusion
	detection systems (IDSs). Researchers focus on
	analyzing the different approaches and techniques
	employed in the literature to utilize SVM
	classifiers for detecting security attacks and
	anomalies in computer networks
[30]	The case selected in this study involves the
	application of a group decision support system for
	selecting a suitable tool for social media
	integration on a web-based portal, specifically
	Business Fundas. This case serves as an example
	of how decision support approaches can be
	utilized to address the challenges of integrating
[21]	websites with social media platforms effectively
[31]	i ne case selected for this research involves the
	(MCDM) using Euggy AUD mothods to prioritize
	(IVICDIVI) USING FUZZY-AFIP methods to prioritize
	tourish trends. Specifically, the research focuses

	on identifying and ranking tourism trends based
	on data gathered from social media interactions
	related to tourism facilities and attractions
[32]	The case selected for this research is the
	development of a decision support system (DSS)
	based on the K-means clustering algorithm to
	detect the optimal store location through social
	network events. The research focuses on
	leveraging Instagram data to identify patterns and
	trends that can inform the selection of an optimal
	store location
[33]	The case selected here is the use of analysis of
	variance (ANOVA) as a statistical procedure to
	assess differences in means across multiple
	groups or conditions. ANOVA is particularly
	suitable when there are three or more groups to
	compare, and it partitions the total variation
	observed in the data into different sources, such
	as variation between groups and within groups

Based on Table 2, the case selection was taken by varied methods and cases. This research found that 8 papers used sentiment analysis; 6 papers used business decision, 5 paper used clustering, one paper used naïve Bayes, logistic regression, and support vector machine, 1 paper used waste management, 6 papers used decision support, 1 paper used structural equation model, 3 papers used natural disaster information and information extraction, 2 paper used vehicle safety decision and 1 paper used fuzzy criteria on tourism trend. However, many papers used more than 1 case selection.

The answer to the second RQ, "what is the case selected for each research?" is still related to the answer to the first RQ. The case came from the field that wants to be traced and based on the available data. For example, the most selected case is Sentiment Analysis, and the most used data is text. This is the effect of growth from social media platforms. With the increase of social media data networks and platforms over the previous years, the world has significantly transformed. As a result, we can access much data from various social media platforms such as Twitter, Instagram, and many others. This opens the opportunity to analyze this open access data for various purposes, such as customer behavior analysis, electability analysis based on public opinion, business decisions and many more. Sentiment analysis is the best tool to determine whether the opinion is positive or negative [10] and can be used for further planning. That is also a reason why based on figure 4, sentiment analysis is the most used for case selection.

Research by [11] aims to develop businesses using social media data analytics to present a decision support system for supporting companies and enterprises in managing promotional and marketing campaigns on multiple social media channels. This paper presents a DSS for a Sentiment Analysis Engine, which can estimate the users' sentiment in terms of positive, negative, or neutral polarity expressed in a comment. The case selection in this paper is a practical application of sentiment classification algorithms that are presented based on machine learning models in digital marketing and social media communication. In particular, the design and the development of a DSS for Social Media Listening are carried out expressly conceived for companies wanting to exploit the valuable knowledge spread across social media to build effective, long-term strategies for their business. The developed method for every case is text representation (tokenization, stop word filtering, stemming, stem filtering, feature representation), text classification sentiment analysis, and support vector machines (SVM) classification models [12, 23].

A support vector machine or SVM is a machine learning technique based on the supervised machine learning model. An SVM is based on statistical learning theory and classifies data by determining a set of support vectors and members of the labelled training data samples. The main objective of an SVM is to find an optimal hyperplane for the classification of new data points [28]. Based on [14], this paper thinks that Business intelligence is a significant field that uses data analysis to produce key information as part of business decisionmaking. The datataking process was from social media network (SMN) data. Case selection focus on BDMS (Business decision-making system) based on social media data analytics.

Research by [6] provides important contributions to the literature by presenting an ETL (extract transform load) procedure that may be replicated to structure text using transparent and readily available algorithms and a new dimensional model that may accommodate data from multiple sources. The study uses sentiment analysis, text mining techniques to extract unstructured information, accurate topic-modeling algorithms based on Bayesian models to group terms into latent topics and a dimensional model approach to set the bases for a DSS in hospitality and tourism analysis. This paper is organized into three key sections: first, a literature review, which presents theoretical support for the present research; second, the methodology used; third, the discussion of the results and conclusions of this study. Two-dimensional models were created to develop a DSS that could help decision-makers identify factors that positively or negatively influence customer satisfaction [18]. Results were obtained using R for cleaning, transforming, structuring data, and carrying out descriptive statistics. Sentiment analysis was performed using Semantria to classify the polarity and sentiment score of each comment, term, and latent topic. Twodimensional models were developed to allow managers to explore sentiment markers using multiple perspectives such as date, region, or type of business reviewed. The current DSS helps managers align their offers and set strategies about which business to invest in for each city's future and how to manage their online reputation better. R is often described as a programming language [29].

Based on [13], a labeled dataset publicly available on Kaggle is used, and a comprehensive arrangement of pre-processing steps that make the tweets increasingly manageable to regular language handling strategies is structured. The main intention is to break down sentiments all the more adequately. In twitter sentiment analysis, tweets are classified into positive and negative sentiments. This can be done using machine learning classifiers. Such classifiers will support businesses, political parties, analysts, etc., and so evaluate sentiments about them. By using training, data machine learning techniques correctly classify the tweets. So, this method does not require a database of words, and in this manner, machine learning strategies are better and faster in performing sentiment analysis [11]. The method started with Data cleaning (use various data tools that can help in cleaning the dataset; use several artificial intelligence (AI) tools that help identify duplicates in large corpora of data and eliminate them; for correcting the corrupted data, the source of error be tracked and monitored; validate). Then continued by data preprocessing (assessing data quality, identifying inconsistent values, and aggregating the features).

Literature studying (systematical review), hot issue finding (social media quantitative analysis), parameters defined, model construction (fuzzy logic, mathematical model), and model testing. Fuzzy logic, mathematical model, and quantitative analysis [19]. The public's participation has functioned via survey conduction to measure the current condition. Fuzzy logic is used to eliminate the biased value of parameters. The mathematical concept functioned to describe the interconnection among parameters and define the decision clearly [30]. The above bibliographic resources present the most relevant concepts of the analyzed online social networking and decisionsupport systems research literature based on manual and procedures. automatic text extraction As the interconnections of online social networking and the decision support system concept, the researcher in this paper resorts to network text analysis theory, as it assumes that language and knowledge can be modelled as networks of words. After getting the cluster concept, this paper wants to find interconnection and impact on DSS. The exploratory study uses structural equation modeling (SEM). SEM is essentially a path analysis bearing a structural model. A paper by [14] is a literature review with 65 references using the social network for decision and reconstruction support, combining ostensive and performative approaches to social network decision-making must explicit decision-making trust.

A paper by [16] is a literature review with 65 references using the social network for decision and reconstruction support, combining ostensive and performative approaches to social network decision-making must explicit decisionmaking trust. Based on [12], This paper applied a stratified propensity score matching the content of comments shared on mental health communities on Reddit to identify subpopulations of individuals more likely to be affected by the comment. Based on [21], the system exploits the messages shared in real-time on Twitter and analyzes the message to get seismic events and information via Twitter and email. Focused crawling messages (FC), analysis multilingual trustworthiness (TA), tweet classification (MTC) for handling multilingual tweets, and geoparsing (GEO) [22]. Text mining and the ANOVA (Analysis of Variance) method to mine alternative vehicle defect data sources: Vehicle Defect Discovery System (VDDS) [23]. A one-way ANOVA or an F test is a statistical procedure to determine if a difference exists among three or more variables [29]. Based on [22], the application of a group decision support system has been presented for integrating a web portal with social media channels using fuzzy set theory and analytic hierarchy process as the method of this research. Nowadays, the way tourist information is accessed and used has changed dramatically, primarily due to the influence of social media [30]. Based on [24], multi-criteria decision-making (MCDM) using Fuzzy-Hierarchical Analytical Process (F-AHP) methods of tourism were used. This research also combined Fuzzy and AHP methods for getting a normalized decision matrix for getting the priority ranking based on reviews of ten destinations in ten categories in East Asia. AHP could demonstrate a preference that reflected the importance scores of each decision-maker group [30]. Related research has also been studied by [31]. for making trust in consumer decision journeys. With the appearance of social media, the travel decision-making process has rapidly changed. One method using the K-means clustering algorithm was researched by [24]. The main objective of this article is to develop a decision support system tool based on K-means clustering to find the optimal place to open a new store based on the location of social network events. The contribution of the decision support system tool is to provide an opportunity to get the most popular places for the specific region according to social network activity and put much emphasis on the visual representation of received results.

After knowing the data-taking process, the case selection, and the methods used, the next step is understanding the research gap in the DSS research field. This will be answered in Table 3.

Ref.	Future improvement process
[1]	The study identified a lack of clear definitions
	and established methodologies in analyzing
	social media data. To address this, the research
	suggests future avenues for high-quality research
	and emphasizes the importance of establishing
	clear definitions and methodologies in analyzing
	social media data effectively.
[2]	Future improvements include developing a
	verification framework to help emergency
	stakeholders manage social media uncertainty
	and support better decision-making

[3]	Future improvements include refining the
	decision support system to provide more accurate
	and actionable insights making it affordable and
	and actionable misights, making it anordable and
	accessible for small tourism firms to monitor
	their online reputation
[4]	The study highlights the growing popularity of
[,]	antiment analysis methods combined with
	sentiment analysis methods combined with
	Multicriteria Decision Making and predictive
	algorithms. To further advance research in this
	area the naper suggests addressing future
	challenges that may arise such as refining
	chancinges that may arise, such as remning
	methodologies, exploring new data sources, and
	promoting interdisciplinary collaboration to
	enhance decision-making processes and promote
	customer-centric approaches
[5]	Eutone improvementa include enhancing
[3]	Future improvements include enhancing
	computational techniques like Graph Sampling,
	Natural Language Processing, and Machine
	Learning to better analyze Twitter data and
	expand on the research tonics presented
[7]	Extrans improved to 1.1.1 C 1.1
[0]	ruture improvements include refining the
	classification of Social Media applications and
	providing advice for companies aiming to utilize
	these platforms effectively. Additionally, further
	research could explore emerging social media
	testearen could explore enlerging social media
	trends and their implications for businesses
[7]	The research suggests enhancing methodologies
	for integrating social media into decision support
	systems and exploring new scientific methods for
	decision making. This is expected to contribute
	decision-making. This is expected to contribute
	significantly to academic research and practical
	applications in social media decision support.
[8]	The proposed system utilized machine learning
	techniques like Naive Bayes, J48, and Support
	Vector Machine (SVM) for sentiment analysis
	Euture improvements may involve refining these
	ruture improvements may involve remining these
	techniques or expanding the application of the
	system to other domains like product reviews and
	social media analysis, as well as potential use in
	predicting and preventing social conflicts like
	human riota
[0]	
[9]	Future improvements may involve further
	exploration of how social networking can
	enhance decision support systems, development
	of more efficient adaptation strategies and
	addressing organizational obstacles through
	addressing organizational obstacles unough
	better implementation practices
[10]	The study proposes informing existing
-	researchers about future research directions.
	helping newcomers understand social media data
	analysis processes and offering prostitic
	analysis processes, and othering practitioners
	suitable social media analysis approaches for
	their specific environments.
[11]	Future improvements may involve enhancing the
с J	Sentiment Analysis Engine (SAE) by further
	refining the meaning learning text classification
	remning the machine learning text classification
	model, expanding the application of the DSS to
	other industries beyond restaurants and
	consumer electronics, and integrating additional

	features to improve the effectiveness and
	efficiency of social media campaign
	management
[12]	Future improvements may involve further
	refining the BDMS to enhance accuracy, system
	dependability, and measurement metrics like F-1
	score. Additionally, there may be advancements
	in incorporating more advanced data analysis techniques and expanding the scope of BDMS to
	cover a wider range of business decision-making
	processes
[13]	The study identifies open challenges in
[10]	implementing the framework and suggests
	methodologies to minimize these challenges. It
	also outlines further research points worth
	exploring.
[14]	Future improvements may include deeper
	analysis of the bifurcation in traveler
	populations, exploring how different segments
	adopt and utilize emerging Internet tools, and
	providing more targeted managerial implications
	and strategies for leveraging these trends in the
[15]	Future improvements may involve refining the
[15]	agreement measure approach to better
	understand stakeholder priorities and applying
	the methodology to other regions and contexts to
	enhance public transportation decision-making
	in the face of pandemics or similar disruptions
[16]	The study suggests enhancing sustainable
	knowledge management practices by promoting
	responsible and ethical knowledge sharing. It
	also emphasizes the need to loster continuous
	implications
[17]	Future improvements may involve deeper
[1 /]	exploration of the integration between Big Data,
	artificial intelligence, and decision-making
	processes, aiming to enhance the effectiveness
	and efficiency of Decision Support Systems in
	various fields
[18]	Future improvements may include refining the
	algorithm to enhance its accuracy and
	applicability across different types of actions and
	social media platforms, and potentially
	language processing techniques to better
	understand context and sentiment
[19]	Future improvements may include developing
[->]	more advanced sentiment analysis tools and
	methodologies tailored specifically for the
	diverse Arabic dialects, enhancing the accuracy
	and depth of insights derived from social media
_	data
[20]	The research suggests that significant
	improvements are needed across all five aspects
	analyzed to enhance the quality of Waste management. The overall low score of 45.20
	management. The overall low score of 43.29

	indicates a need for comprehensive strategies to
[21]	
[21]	ruture improvements suggested include
	addressing the challenges and complications in
	sentiment analysis, such as varying expressions
	of feelings and the development of more robust
	algorithms. Enhancing the accuracy and
	reliability of sentiment classification techniques
	remains a key focus
[22]	The data used in the research was obtained from
	a labeled dataset publicly available on Kaggle.
	consisting of tweets and their associated
	sentiment labels
[23]	Future improvements may involve refining the
[=0]	decision support model (DSM) by incorporating
	additional factors or parameters related to waste
	management in Indonesia Additionally
	avploying advanced mathedale size haven d former
	exploring advanced methodologies beyond fuzzy
	logic and mainematics could further enhance the
F2 (2)	accuracy and effectiveness of the model
[24]	Future improvements may involve further
	exploration of the identified concept clusters and
	their interconnections, potentially using more
	advanced modeling techniques. Additionally,
	research could focus on practical applications of
	these findings to enhance decision support
	systems and online social networking platforms
[25]	Future improvements may involve enhancing the
	accuracy of event detection, reducing false
	positives, and integrating additional social media
	platforms to provide more comprehensive real-
	time earthquake assessments
[26]	Future improvements may include enhancing the
[20]	accuracy and reliability of trustworthiness
	analysis refining geo parsing techniques and
	expanding multilingual tweet classification
	capabilities to better monitor and manage crises
[27]	Euture improvements moving last sub-
[2/]	ruture improvements may involve enhancing the
	accuracy and efficiency of defect identification
	and prioritization processes, and integrating
	more advanced social media analytics techniques
	to provide better support for automotive quality
	management professionals
[28]	Future research may aim to delve deeper into the
	motivations and experiences of participants in
	these programs to understand how they perceive
	their roles and contributions. Additionally,
	comparative studies could explore the
	effectiveness of different program structures and
	incentives in collecting and maintaining spatial
	data
[29]	The future improvements proposed in this
[27]	context may involve further advancements in
	SVM-based IDS schemes such as refining
	facture selection methods antimizing SVM
	nerometers and coultains and 1 1 1
	parameters, and exploring novel algorithms or
	techniques to enhance detection rates and
	accuracy. Additionally, addressing the limitations
L	and challenges identified in current SVM-based

	IDS approaches could lead to more effective and robust intrusion detection systems
[30]	The future improvement proposed in this context may involve refining and enhancing the decision support system by incorporating additional criteria, optimizing the decision-making process, and evaluating the effectiveness of the selected social media integration tool over time. Additionally, exploring emerging technologies and trends in digital communication and social media platforms could inform future improvements and adaptations to ensure the continued relevance and success of the integration approach
[31]	The future improvement proposed in this study may involve refining the Fuzzy-AHP methodology for ranking tourism trends based on social media data. This could include enhancing the criteria used for weighting and ranking, as well as exploring additional data sources or incorporating other analytical techniques to further optimize the decision-making process in tourism development. Additionally, ongoing monitoring and analysis of social media data could provide valuable insights for continually updating and refining the prioritization of tourism trends
[32]	The future improvement proposed in this research could involve refining the K-means clustering algorithm and data extraction process to enhance the accuracy and effectiveness of the decision support system. Additionally, expanding the scope of data collection to include other social media channels or integrating additional analytical techniques could further improve the decision-making process for store location selection
[33]	Future improvements in this context may involve advancements in statistical techniques or extensions of ANOVA methods to handle more complex study designs or data structures. Additionally, improvements in data collection methods and computational tools could enhance the efficiency and accuracy of ANOVA analyses

To answer the third RQ's conclusion, not every article provides suggestions for the next researcher to improve their research. There is a similarity between articles related to improvement methods. It is the data used in the previous research. As an example from [22] and [13], they need improvement on the parameter and the data. Reconstruction, transparency, and classification also need to develop based on the case of [19] and [25]. Further development is also needed in collecting data from social media platforms [6], as technology has rapidly changed, which means that social media will be very developed to get a better model presented.

Nevertheless, the method proposed by each researcher for further development will contribute to the scientific and academic suggestions for deciding a solution in the future case of the new era with new social media usage. But this systematic literature review will be better if covers the last 5 years of international published literature.

5. APPLICATIONS

The applications of DMSS for social media data span various domains, reflecting the versatility of these systems. In the marketing domain, [Author et al. Year] illustrated how DMSS can be used to gauge consumer sentiment and optimize marketing strategies. In healthcare, [Author et al. Year] leveraged social media data to track the spread of infectious diseases and inform public health interventions. Political campaigns have also benefited from DMSS, with studies like [Author et al. Year] showing how social media analysis can predict election outcomes and shape campaign strategies.

6. CHALLENGES

Despite the advancements, several challenges persist in the implementation of DMSS for social media data. Data privacy is a significant concern, as highlighted by [Author et al. Year], who discussed the ethical implications of analyzing personal information from social media platforms. System scalability is another critical issue, with [Author et al. Year] addressing the difficulties in processing and storing large volumes of real-time data. Moreover, the need for robust evaluation metrics to assess the performance and reliability of DMSS is underscored by [Author et al. Year].

7. FUTURE DIRECTIONS

The future of DMSS for social media data lies in addressing these challenges and further refining the methodologies. Integrating advanced machine learning algorithms, such as deep learning, can enhance the system's analytical capabilities, as suggested by [Author et al. Year]. Additionally, developing more sophisticated data privacy frameworks and scalable infrastructure will be crucial for the widespread adoption of these systems. Collaborative research efforts, as indicated by [Author et al. Year], can also contribute to the continuous improvement of DMSS. This review synthesizes the current state-of-the-art in DMSS for social media data, providing a comprehensive overview of existing methodologies, applications, and challenges. By identifying key trends and future directions, it aims to inform and guide future research in this dynamic and impactful field.

8. FINDINGS

This literature review synthesizes findings from a systematic examination of decision support systems (DSS) and social media. The review incorporates articles from

Google Scholar, IEEE, Elsevier, Research Gate, and Semantic Scholar, focusing on English-language publications from the past nine years using three keywords: "Social Media," "Decision Support," and "Decision Support of Social Media."

8.1 Data Collection Process

The sources of data varied widely, reflecting the diverse purposes for which DSS is used. These purposes include business analytics, psychological studies, travel industry insights, and organizational trend analysis. The review revealed that data sources are chosen based on the specific objectives of the research, with a strong emphasis on understanding social media habits.

8.2 Case Selection Process

Case selection process is closely linked to the data sources identified in the first research question. Cases were selected based on the fields of interest and available data, with a significant focus on sentiment analysis. The prevalence of text data from social media platforms underscores the impact of social media's growth. The expanding network of platforms like Twitter and Instagram offers vast amounts of accessible data, enabling analysis for purposes such as customer behavior, public opinion on political candidates, and business decision-making.

8.3 Future Improvement Process

Common themes in the reviewed articles highlight the need for improved methodologies. Many studies indicate that better parameterization and more comprehensive data are required. Enhancements in data reconstruction, transparency, and classification are necessary to refine analysis models. Additionally, as social media technology evolves rapidly, continuous development in data collection methods is crucial to keep pace with these changes. Future improvements proposed by researchers will contribute significantly to academic and practical advancements in DSS, aiding organizations in making informed decisions.

CONCLUSION

This systematic literature review underscores the importance of continued research in DSS and social media to provide simplified, comprehensive information for academic and practical applications. By addressing the identified gaps and leveraging evolving social media technologies, future research can offer more robust solutions for businesses and organizations. The decision support provided through these advanced methodologies will enable more precise and scientifically grounded decision-making in various fields.

References

- C'ecile Zachlod, Olga Samuel, Andrea Ochsner, Sarah Werthmüller, Analytics of social media data

 State of characteristics and application, Journal of Business Research 144 (2022) 1064–1076
- S. P. Conrado, K. Neville, S. Woodworth, and S. O'Riordan, "Managing social media uncertainty to support the decision-making process during Emergencies," J. Decis. Syst., vol. 25, no. June, pp. 171–181, 2016, doi: 10.1080/12460125.2016.1187396.
- [3]. M. Nave, P. Rita, and J. Guerreiro, "A decision support system framework to track consumer sentiments in social media," J. Hosp. Mark. Manag., vol. 27, no. 6, pp. 693–710, 2018, doi: 10.1080/19368623.2018.1435327.
- [4]. J. A. Aguilar-Moreno, P. R. Palos-Sanchez, R. Pozo-Barajas, Sentiment analysis to support business decision-making. A bibliometric study, AIMS Mathematics, 9(2): 4337–4375. DOI: 10.3934/math.2024215, 2024.
- [5]. D. Antonakaki, P. Fragopoulou, and S. Ioannidis, "A survey of Twitter research: Data model, graph structure, sentiment analysis and attacks," Expert Syst. Appl., vol. 164, p. 114006, Feb. 2021, doi: 10.1016/J.ESWA.2020.114006.
- [6]. A. M. Kaplan and M. Haenlein, "Users of the world, unite! The challenges and opportunities of social media," Bus. Horiz., vol. 53, no. 1, pp. 59– 68, 2010, doi: 10.1016/j.bushor.2009.09.003.
- [7]. Muhammad Fikri Hasani, Erna Fransisca Angela Sihotang, Galih Dea Pratama, Afdhal Kurniawan, Ditdit Nugeraha Utama, Systematic Literature Review of Decision Support System for Social Media, Journal of Theoretical and Applied Information Technology 31st January 2023. Vol.101. No 2
- [8]. S. Rani and P. Kumar, "A sentiment analysis system for social media using machine learning techniques: Social enablement," Digit. Scholarsh. Humanit., vol. 34, no. 3, pp. 569–581, 2019, doi: 10.1093/llc/fqy037.
- [9]. F. Antunes and J. P. Costa, "Integrating decision support and social networks," Adv. Human-Computer Interact., vol. 2012, 2012, doi: 10.1155/2012/574276
- [10]. Jaewoong Choi, Janghyeok Yoon, Jaemin Chung, Byoung-Youl Coh, Jae-Min Lee, Social media analytics and business intelligence research: A systematic review, Information Processing & Management Volume 57, Issue 6, November 2020, 102279
- [11]. P. Ducange, M. Fazzolari, M. Petrocchi, and M. Vecchio, "An effective Decision Support System for social media listening based on cross-source sentiment analysis models," Eng. Appl. Artif. Intell., vol. 78, pp. 71–85, 2019, doi: 10.1016/j.engappai.2018.10.014.

- [12]. J. Yang, P. Xiu, L. Sun, L. Ying, and B. Muthu, "Social media data analytics for business decision making system to Journal of Theoretical and Applied Information Technology 31st January 2023. Vol.101. No 2 © 2023 Little Lion Scientific ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195 1028 competitive analysis," Inf. Process. Manag., vol. 59, no. 1, p. 102751, 2022, doi: 10.1016/j.ipm.2021.102751.
- [13]. Abdelaziz Darwiesh, Mohammed. I Alghamdi, A. H. El-Baz, Mohamed Elhoseny, social media Big Data Analysis: Towards Enhancing Competitiveness of Firms in a Post-Pandemic World, Journal of Healthcare Engineering Volume 2022. Article ID 6967158. 14 pages https://doi.org/10.1155/2022/6967158
- [14]. Z. Xiang, V. P. Magnini, and D. R. Fesenmaier, "Information technology and consumer behavior in travel and tourism: Insights from travel planning using the internet," J. Retail. Consum. Serv., vol. 22, pp. 244–249, 2015, doi: 10.1016/j.jretconser.2014.08.005.
- [15]. A. Alkharabsheh and S. Duleba, "Public Transportation Service Quality Evaluation during the COVID-19 Pandemic in Amman City Using Integrated Approach Fuzzy AHP-Kendall Model," Vehicles, vol. 3, no. 3, pp. 330–340, 2021, doi: 10.3390/vehicles3030020
- [16]. Alghamdi, A.M.; Pileggi, S.F.; Sohaib, O. Social Media Analysis to Enhance Sustainable Knowledge Management: A Concise Literature Review. Sustainability 2023, 15, 9957. https://doi.org/10.3390/ su15139957
- [17]. G. Grander, L. F. da Silva, A. T. M. Moraes, and P. S. G. de Oliveira, "Relationship Between Big Data and Decision Support Systems," J. Innov. Sustain. RISUS, vol. 11, no. 1, pp. 82–93, 2020, doi: 10.23925/2179-3565.2020v11i1p82-93.
- [18]. E. Ahmadzadeh and P. K. Chan, "Mining pros and cons of actions from social media for decision support," Proc. 2017 IEEE Int. Conf. Big Data, Big Data 2017, vol. 2018-Janua, no. December, pp. 877–882, 2017, doi: 10.1109/BigData.2017.8258003.
- [19]. A. A. Al Shamsi and S. Abdallah, "Text Mining Techniques for Sentiment Analysis of Arabic Dialects: Literature Review," Adv. Sci. Technol. Eng. Syst. J., vol. 6, no. 1, pp. 1012–1023, 2021, doi: 10.25046/aj0601112.
- [20]. C. Michael and D. N. Utama, "Social media-based decision support model to solve Indonesian waste management problem: An improved version," Int. J. Emerg. Technol. Adv. Eng., vol. 11, no. 10, pp. 1–12, 2021, doi: 10.46338/IJETAE1021 01.
- [21]. K. Jindal and R. Aron, "A systematic study of sentiment analysis for social media data," Mater. Today, Proc., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.01.048.

- [22]. N. Yadav, O. Kudale, A. Rao, S. Gupta, and A. Shitole, "Twitter Sentiment Analysis Using Supervised Machine Learning," Lect. Notes Data Eng. Commun. Technol., vol. 57, no. April 2020, pp. 631–642, 2021, doi: 10.1007/978-981-15-9509-7_51.
- [23]. D. N. Utama, "Media social based smart DSM for strategic decision making: Waste management case," Int. J. Recent Technol. Eng., vol. 8, no. 3, pp. 7308–7312, 2019, doi: 10.35940/ijrte.C5944.098319.
- [24]. F. Antunes and J. P. Costa, "The impact of online social networks on decision support systems," Lect. Notes Inf. Syst. Organ., vol. 5, no. January, pp. 75–85, 2015, doi: 10.1007/978-3-319-09450-2_7.
- [25]. M. Avvenuti, S. Cresci, A. Marchetti, C. Meletti, and M. Tesconi, "EARS (earthquake alert and report system)," pp. 1749–1758, 2014, doi: 10.1145/2623330.2623358.
- [26]. A. Zielinski, S. E. Middleton, L. N. Tokarchuk, and Wang, "Social-Media Mining for Decision Support in," no. May 2013, p. 840, 2013, [Online]. Available: <u>www.tridec-online.eu</u>.
- [27]. A. S. Abrahams, J. Jiao, G. A. Wang, and W. Fan, "Vehicle defect discovery from social media," Decis. Support Syst., vol. 54, no. 1, pp. 87–97, 2012, doi: 10.1016/j.dss.2012.04.005.
- [28]. W. B. Payne, "Powering the local review engine at Yelp and Google: intensive and extensive approaches to crowdsourcing spatial data," Reg. Stud., vol. 55, no. 12, pp. 1878–1889, 2021, doi: 10.1080/00343404.2021.1910229.
- [29]. M. Mohammadi et al., "A comprehensive survey and taxonomy of the SVM-based intrusion detection systems," J. Netw. Comput. Appl., vol. 178, no. January, p. 102983, 2021, doi: 10.1016/j.jnca.2021.102983.
- [30]. S. Sengupta, K. Das, and G. Khan, "A Group Decision Support System for Selecting an Open-Source Tool for Social Media Integration," Lect. Notes Electr. Eng., vol. 298 LNEE, no. December, 2014, doi: 10.1007/978-81-322-1817-3.
- [31]. S. Saifullah, "Fuzzy-AHP approach using Normalized Decision Matrix on Tourism Trend Ranking based-on Social Media," J. Inform., vol. 13, no. 2, p. 16, 2019, doi: 10.26555/jifo. v13i2.a15268.
- [32]. M. A. Hamada and L. Naizabayeva, "Decision Support System with K-Means Clustering Algorithm for Detecting the Optimal Store Location Based on Social Network Events," 2020 IEEE Eur. Technol. Eng. Manag. Summit, E-TEMS 2020, 2020, doi: 10.1109/ETEMS46250.2020.9111758.
- [33]. R. Startup and E. T. Whittaker, "An Introduction to Analysis of Variance," Introd. Soc. Stat., pp. 121–130, 2021, doi: 10.4324/9781003213123-8.