
Suresh Gyan Vihar University, Jaipur
International Journal of Converging Technologies and Management (IJCTM)
Volume 2, Issue 2, 2016
ISSN: 2455 - 7528

Efficient processing of top-k spatial Boolean queries for distributed

system

Akash Porwal Dept. of Information Technology,Suresh Gyan Vihar University, jaipurRaj. India akash.compound@gmail.com

Savita Shiwani HOD, Dept. of Information Technology Suresh Gyan Viahr University, jaipur Raj, India

Abstract— The widened use of spatial data imposes the heavy load on databases and data sizes. Now a day’s spatial data is a

part of smart computing because location is mostly responsible for user activities. In this paper we focus on reviewing a more

efficient system to process spatial data in distributed system by implementing a combined approach for geospatial indexing and

query formatting. Previous research suggests a positive improvement in efficiency of system through a new approach. A review

of techniques for indexing and query processing is presented in this paper.

Keywords—Spatial data; GeoHash; GeoSpatial indexing; Boolean Query;

I. INTRODUCTION

Today, in the age of technology where the information is not a

limited or costly resource, where you can find what you

demand on just some clicks. The evolution of technology

comes with both faces of coins, positive side is, our workforce

and production efficiency increases and we became much

smarter. The other face is, we depend on technology for

assisted decisions but also helps us to take smarter decisions

with the help of information. The prevailing trend of mobile

computing gives an opportunity for area/location based

services. The survey conducted in recent months shows that

more and more users are using their mobile phones for almost

all tasks then personnel computers. Increased access of

internet through mobile also improves the reach of computing

power in remote or rural areas of India. From the current

scenario’s one of the tech giant announced that the “company

would now develop services “mobile first”, meaning that the

services are developed first for mobile devices and only then

adopted to desktop devices and users” [1]. Location data on a

mobile device provides various services as-
Finding routes- the services works between two geographical

points on earth’s surface and finding the minimum distance

between points. The basic idea of finding minimum distance

works for distance via air. But for navigation purposes a

database containing all routes and public roads is used to

execute query where distance between points at every turn is

computed and stored in database. During a query execution

the sum of the distance is shown to user.
Nearest Neighbor- Nearest Neighbor works around a user’s

location computed through different technologies. Nearest
Neighbor queries takes input of user’s location and text input

(keywords) user willing to search. The accuracy and

preciseness of results is based on two factors- (i) Accuracy of

user’s location- if the location of user is pinpointed then the

system can find more nearest results in a circular area with

least distance. (ii) The keywords also play a vital role in

computing results.
e.g. – As if user search for the stores near his location who

sells “shoes” and “jeans”. Then, his search would look like

“shoes and jeans” here we can see that the search processor

takes “and” as keyword. But it needed to be taken as Boolean

symbol.

Most importantly all these services depend on a set of data

standardization for earth surface known as Euclidean space

where every point on earth surface is provided a unique

numerical value for the earth surface. A sphere, the most

perfect spatial shape according to Pythagoreans, also an

important concept in modern understanding of Euclidean

spaces represented in fig. 1

mailto:akash.compound@gmail.com

Suresh Gyan Vihar University, Jaipur
International Journal of Converging Technologies and Management (IJCTM)
Volume 2, Issue 2, 2016
ISSN: 2455 - 7528

Fig.1 Sphere Wireframe

A. LOCATION DATA

Location data is the address of a point on earth surface in

terms of coordinates. Coordinates of earth surface in terms of

degree (angle) where of center of earth is considered as centre

of plane. Most common choice of coordinate is latitude,

longitude; sometimes elevation data can also be required.
 Cartesian Coordinates

Cartesian coordinates can be explained

as mapping of earth surface in the form

of plane coordinate system(x y z) which 
helps to simplify mathematical

calculations related to point mapping.

The origin is center of mass earth. 
 Shape of earth

The earth is not a perfect sphere, but an

irregular shape approximating a

ellipsoid. The ellipsoidal effect is due to

visible bulge at equatorial hence

difference of radius is seen between the

poles and equators. The shorter axis at

poles approximately coincides with axis

of rotation. Various systems have been

developed and implemented at different

technologies. The system used by GPS,

WGS84, differs at Greenwich from the

one used on published maps OSGB36

by approximately 112m. the military

system ED50, used by NATO, differs

by about 120m to 180m [3].



B. SPATIAL DATABASES
Spatial data is a set of coordinates which can be

represented in different formats- where representation of

direction is optional. Number of digits after the point

represents the preciseness of location or pinpointed location.

As spatial database and their objects are always related to each

other and the nearest objects are more related than the farthest

objects.
Representing the objects-

 Point:[x:real, y: real]


 Node[point, <arc>]


 Arc: [node-start, node-end, <point>]


 Polygon: <point>


 Region: {polygon}

Table 1 shows an example of record type instances.

Two chains, respectively identified as TLID 8086 and 8087,

feature the start (FR) and end (TO) nodes, in longitude

(LONG) and latitude (LAT). For example, FRLAT stands for

the latitude of the start node [2].

As soon as the chain is not a line segment, we need additional

information on intermediate (shape) points. Table 1 Example

of record type (chains).

TLID FRLONG FRLAT TOLONG TOLAT

… ... … … …

8086 -7215654 +41957498 -72161936 +41958117

8087 -7219712 +41957206 -72197197 +41957669

… … … … …

C. SPATIAL DATASTRUCTURES

We classify the geo-textual indices in to three different

categories: the spatial indexing scheme used, the text index

employed, and hybrid manner of the spatial index and the text

index [4].

1) Spatial Indexing scheme
Considering the spatial indexing scheme used,

we classify the indices into three categories,

namely R-tree based indices, grid based indices,

and space filling curved based indices.
 R-tree based- This category of indices

use the R-tree [5] or a variation (e.g. the

R*-tree [6]). Most geo-textual indexing

is done using the same format and

inverted file is used for text indexing.
 Grid based- Grid based indexing is a

combination of grid indexing with a text

index (e.g. the inverted file). These grid

http://commons.wikimedia.org/wiki/File:Sphere_wireframe.svg#/media/File:Sphere_wireframe.svg

Suresh Gyan Vihar University, Jaipur
International Journal of Converging Technologies and Management (IJCTM)
Volume 2, Issue 2, 2016
ISSN: 2455 - 7528

indices divide space into a predefined

number of equal-sized squares of

rectangular cells. The grid index and the

text index can be organized either

separately or combined tightly.
 Space filling curve based- These indices

combines files with a space filling

curve, a Hilbert curve based and Z-

curve based index is included. The

indices are based on the property of

distance proportionality where the

distance between points in the native

space is proportional to distance

between points on the space filling

curve.

2) Text indexing scheme
 Inverted file- An inverted list is a list of

vocabulary where every keyword is

stored with an indexing of location of

same keyword used in different

locations.
 Bitmap- Some R-tree based indices use

bitmaps to index the text information in

subtrees. The presence or absence of a

term is represented by bit in a bitmap. 0

represents the absence of terms where 1

represents the presence.



3) Combination Scheme
During implementation geo-textual indices

combine spatial and text indexing. The

categorization of indices can be done through

how they are combined namely text-first loose

combination, spatial-first loose combination, and

tight combination.
A text-first loose combination index implements

the text indexing scheme (e.g. inverted list) as

the top-level index and then the postings are

arranged in inverted list in a spatial indexing

scheme(e.g. R-tree, a grid or a spatial filling

curve), vice versa in spatial-first loose

combination. Where, as the tight combination

index prunes the search space simultaneously

during query processing.

D. HIERARICHIAL SPATIAL DATA STRUCTURE

GeoHash is a geocoding system for latitude and longitude.
A geohash code, represented as a string, basically denotes a

rectangle (enclosed area) on the earth. Spatial hierarchy (the

precision of location based on the enclosed area) is defined on

the basis of string length. The bigger length of string denotes

less area covered. And hence can also be used to save space in

database based on the precision.

E. SPATIAL KEYWORD QUERYING

Spatial keywords queries are now become the part of our

daily life. As for Smartphone users spatial queries can be used

with different applications. Many Google services are

provided on the location basis like- weather forecast, nearest

POI (point of interest- parking location, shopping centers, and

restaurants). Three types of spatial keyword queries are

frequently used- Boolean kNN query, the top-k kNN query,

and the Boolean range query [4].

 Boolean kNN Query: “Retrieve the k

objects nearest to the user’s location” such

that object’s text description contains the

keyword searched.
 Top-k kNN Query: Retrieve the k objects

with highest ranking scores, measure as a

combination of their distance to the query

location and the relevance of their text

description to the query keywords.
 Boolean Range Query: Retrieve all objects

whose text description contains the

keywords “searched” and whose location is

within 10km of the query location.

II. LITERATURE REVIEW

In this section we will discuss the previous research done for
the processing of Spatial Queries. Where, we study the

different Geo-Textual indexing, different types of spatial

queries and their Boolean processing in distributed storage
system.

A. Geo-Textual Indexing

1) R-Tree Based Indices
 IF-R* and R*-IF

The combination of R-tree and inverted

file is one of the best combination to

process spatial queries where IF-R*

(inverted file- R- Tree) and R*-IF(R-

tree –inverted file) is the loosely

coupled geo-textual indexing [8]. Both

of them were designed to generate

results for spatial query in a pre-

specified region i.e. BRQ (Boolean

range query).

Suresh Gyan Vihar University, Jaipur
International Journal of Converging Technologies and Management (IJCTM)
Volume 2, Issue 2, 2016
ISSN: 2455 - 7528

However the results show that it cannot

be effectively used for TkQ (Top-k

query [4].
 KR*-Tree

KR*-Tree (keyword R*-Tree) is a

structure where nodes of the tree are

augmented in the inverted list as objects

which helps to prune the tree nodes

which do not contain the query

keywords [9]. 
The approach is proposed for BRQ and

cannot effectively work for TkQ [4].

 -Tree

 -Tree contains a signature file

attached to every node of tree in the

form of bitmap which stores the fan-out

of the tree [10]. 
It is efficient to process BRQ but cannot

process TkQ because of unavailability

of frequency information 
 Hybrid Spatial-Keyword Indexing(SKI)

SKI works on the combination of R-tree

and bitmaps where every super node of

R-tree stores the bitmap in the form of

inverted file. SKI is similar to R*-IF

however, the SKI uses the bitmap

version of inverted file where as R*-IF

uses the original inverted file [7].
 IR-tree index and its variants

Combination of inverted file and R-Tree

where every node of tree holds a pointer

to the list of vocabulary which is a

inverted list. IR-Tree can process all

three types of queries, namely, BRQ,

BkQ (Boolean k- result query), and

TkQ.
 WIR-Tree

WIR-Tree is also a variant of IR-Tree.

It works on finding the list of words

which helps to prune lesser number of

nodes. It requires an approach to divide

the list of words in two parts where list

one contain most frequent where the

second list contains the less frequent

words. Then again the list is divided in

two parts based on their frequency and

this process is iterative until the list

contains only a certain number of

words. The final list is applied on the

nodes of tree where an improved

version WIBR tree. Here, the bitmaps

used to count the frequency of word in

near future [11].
 Spatial Inverted Index(S2I)

S2I is based on the R-Tree and inverted

file which implements different

techniques to partition the list of

frequent and infrequent terms [12]. 
It is originally designed for TkQ but can

also be used for BkQ and BRQ [4]. 
2) Grid Based Spatial-Textual Indices

 ST and TS
ST(Spatial-first text) and TS(Text-first

Spatial) are the simplest Grid based

indices based on the loosely coupled

combination scheme [13]. TS is more

efficient than ST and hence only TS is

used. TS is primarily designed for BRQ

and cannot be used for BkQ and TkQ. 
 Spatial-Keyword Inverted File(SKIF)

SKIF is quite different approach to

implement the query because it uses an

inverted list for both spatial and text

data. It considers every point as the

region. It is basically designed to

process a query different from all three

types but the query looks similar to

BRQ and SKIF can be used on BRQ

[14].
3) SFC-QUAD

Several hybrid approaches were proposed

combining the space filling curve and inverted

file. In which SFC-QUAD is seen to perform

best. SFC-QUAD inverted list contains the

docIDs and frequencies of objects [15].

B. Spatial Queries
There are different types of spatial queries, based on the

need like k Nearest Neighbor query, Top-k kNN spatial

Boolean query and Boolean range query for different

applications. We focus on selected query where we have to

process Boolean algebra efficiently for précised results like

Top-k kNN spatial Boolean query. Top-k queries are used to

find the matching results for user’s keyword as in database

thousands of objects exist for the same keyword but the

Boolean processing between keywords helps to choose objects

from different data space which suits more to user

requirement.

Suresh Gyan Vihar University, Jaipur
International Journal of Converging Technologies and Management (IJCTM)
Volume 2, Issue 2, 2016
ISSN: 2455 - 7528

C. Spatial Query Processing

In hierarchal spatial data structure (GeoHash) containing

location information stored in the form of String. Data is

stored in the form of objects where a spatial object includes its

geometry and can have any information about the object about

its name, address. GeoHash- our spatial index supports

generally all geometries including points, lines, rectangles,

curves and polygons. To store a spatial object in database and

to be indexed we first calculate a set of minimum bounding

boxes geo-hash set, which fully cover the geometry of spatial

object. Generation of too many bounding boxes to define the

object and increased overhead can be controlled through

graining of rectangular boxes and hence defining the

maximum number of bounding boxes for each geometry is

important. The number of bounding boxes can be

implemented differently for different applications. Different

geohash codes length does not accompany a precision in

geometry.
Our spatial query processing consists of two steps: filter step

and refinement step. In the filter step, we find spatial objects,

which satisfy the query condition, by pruning non-qualifying

spatial objects. In next step, we examine each candidate spatial

objects to determine whether the object is actually satisfying

the query condition.
The definition of geohash shows longer geohash codes will

generate smaller geometries. If a local area is well developed

and have many objects stored in the database with their

geometries then a small area can occupy large number of rows

in database which affects the performance of our spatial query

processing.
To improve performance of processing we consider a large

area or fix the length of string generated through geohash

where many rows contain the same string / rectangular box

helps to save space and improve performance but affects the

location precision.
To execute spatial queries in geohash we work on finding only

relevant objects related to query by calculating the minimum

geohash set and then finding the relative context of object.

Boolean keyword querying

Consider a spatial database D = { } is a set of

objects such that every

o D has a pair of attributes < p , T>, where p E is a point

in a metric space E with distance dist(), and T =

{ } is a document as a set of terms.
A Top-k spatial Boolean (k-SB) query Q is a triple <l, k, B>,

where l E is the query location (spatial constraint), k is the

desired output size and B is the conjunctive Boolean predicate

(text constraint). B is a set of keywords prefixed with Boolean

operators { }, conjunctively connected as follows:

B = [∧(A ={ } })⋀∨(C ={ } })⋀¬ (G

={ } })] (1)

A (AND-semantics), C (OR-semantics), G (NOT-semantics) are subsets of terms
prefixed with ∧, ∨, and¬, respectively. An object o ∈ D satisfies B if:
[(∀a ∈ A : o.T ∩ a ≠ ∅)⋀ (∃c ∈ C : o.T ∩ c ≠ ∅)⋀ (∀g ∈ G :

o.T ∩ g = ∅)] (2)

The result of the k-SB query Q is the list:

L = { ∈ D, i =1... | satisfies B ∧ ≤ k}, such that:

∀o ∈ (D \ L): [dist (o.p, l) ≥ arg dist (r.p, l) ∨ ¬ (o

satisfies B)] (3)

Objects in L are sorted by distance to l in decreasing order. In

other words, a k-SB query Q returns the k nearest neighbor

objects to the query location l that satisfies the conjunctive

Boolean predicate B. In this work, we assume E is the

Euclidean space. The problem is how to efficiently compute L

[7].

D. Distributed Storage Systems

A large number of non-relational distributed databases are

available in the market which are not based on the SQL and

are used in big data applications and analytics because they

are designed for large data with data replication enabled with

fault tolerance. These databases are also known as NOSQL

databases because they are schema-less or key-value store.

III. CONCLUSIONS AND FUTURE WORK

All the above techniques and methods implementation focuses

on efficient processing of location based services. The

techniques we have studied help us to understand query

processing in spatial databases, Geo-Textual indexing,

implementation of Boolean algebra and Hierarchical data

structure- GeoHash for spatial data.
A lot of research is still in process to improve efficiency. We

also suggest an approach for distributed systems where Top-k
Boolean queries are being processed on GeoHash where

GeoHash can help by saving space and query processing time

Suresh Gyan Vihar University, Jaipur
International Journal of Converging Technologies and Management (IJCTM)
Volume 2, Issue 2, 2016
ISSN: 2455 - 7528

by reducing the number of rows. On the other hand, Boolean

processing helps by improving the preciseness and context of
result set.

References

[1] Cao, X. e. (2012). “Spatial keyword querying”

Conceptual Modeling. Springer Berlin Heidelberg, 16-29.
[2] Rigaux, P. M. (2001). Spatial Databases: with application

to GIS.
[3] A Guide to coordinate system in Great Britain. (2007).
[4] Chen, L.e.(2013). “Spatial keyword query processing: an

experimental evaluation”. Proceedings of VLDB
Endowment.

[5] A.Guttman. (1984). R-trees: Adynamic index structure for
spatial searching. SIGMOD.

[6] N. Beckmann, H.-P. k. (1990). The R*-tree: An efficient
and robust access method for points and rectangles.
SIGMOD.

[7] Cary, A., Wolfson, O., & Rishe, N. (2010, January).
“Efficient and scalable method for processing top-k
spatial Boolean queries”. In Scientific and Statistical
Database Management. (pp. 87-95) Springer Berlin
Heidelberg.

[8] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma.
(2005). Hybrid index structures for location-based web
search. In CIKM, pages 155–162.

[9] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. (2007).

Processing spatial-keyword (sk) queries in geographic
information retrieval (gir) systems. In SSDBM, page 16.

[10] I.D. Felipe, V. Hristides, and N.Rishe. (2008). Keyword
search on spatial databases. In ICDE, pages 656-665.

[11] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen. (2012).
Joint top-k spatial keyword query processing. IEEE
TKDE, 24(10):1889–1903.

[12] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K.
Nørv˚ag. (2011). Efficient processing of top-k spatial
keyword queries. In SSTD, pages 205–222.

[13] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson. (2005).
Spatio-textual indexing for geographical search on the
web. In SSTD, pages 218–235.

[14] A. Khodaei, C. Shahabi, and C. Li. (2010). Hybrid
indexing and seamless ranking of spatial and textual
features of web documents. In DEXA, pages 450–466.

[15] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz,
and T. Suel. (2011). Text vs. space: efficient geo-search
query processing. In CIKM, pages 423–432.

