Developing a Sustainable Ground Water Management Plan for Part of Ghaziabad District, Uttar Pradesh

D. K. Chadha¹, Nidhi Jha²

¹President, Global Hydrogeological Solutions, New Delhi, India
²Research Fellow, Global Hydrogeological Solutions, New Delhi, India

ABSTRACT
The availability of water resources is becoming a major constraint to the fast developing NCR extension covering Loni and Razapur Blocks, Ghaziabad District. Besides domestic and commercial infrastructure, there are 15,000 small and 1,450 medium industries. All of them depend on groundwater resources, development of which has exceeded 76% and beyond this development will lead to saline ingress, ground water pollution and desaturation of aquifers. It thus becomes imperative to utilize 174 MCM run off potential in two blocks for recharge. The paper discusses various options towards attaining sustainability of the water resources to meet the growing demand.

Keywords: Groundwater Development, Sustainable, Aquifer Systems, Artificial Recharge, Pollution

INTRODUCTION
The new infrastructure development and residential complexes entirely depend upon the groundwater resources but for want of adequate information on aquifer system most of the tubewell have become defunct. The Loni and Razapur blocks which are located on the eastern end of NCR region and depend upon the groundwater resources for domestic and industrial water supply. Before becoming hub for infrastructure development, the irrigation was by tubewells and to some extend by surface irrigation system. The upper Ganga canal and its tributaries irrigate western part of the Ghaziabad District and Anup Shalon branch of upper Ganga canal irrigates eastern part of the district but Harpur and Loni block are practically devoid of surface irrigation. As such there is no surplus surface water which can be supplied to the emerging infrastructure, residential complexes, therefore for water supply they are entirely depending upon the groundwater resources. It is therefore imperative to explore the new aquifer zones upto the basement rock which can be exploited for water supply. The scarcity of water resources is leading to conflicts and very near to the water terrorism. The present study have identified the aquifer system upto the basement rock and have also worked on the lateral and vertical extension of the aquifer zones and also the water quality of each of the aquifer zones. In order to overcome the water scarcity, there is a need to regulate the groundwater development making rainwater harvesting and recycling of treated waste water as mandatory.

Geology & Hydrogeology
Regionally the eastern half of the district forms part of Ganga alluvial plain where as its western part in close proximity of Hindon and Yamuna rivers represents marginal alluvial plain. Tectonically the alluvial plain of Ganga basin represents a structural trough (Fore deep) or down wrap of earth crust. The origin of which is correlated to plate tectonic and Himalayan uplift. The area is underlain by quaternary sediments, their thickness increase from west to east and also towards north east. As per available subsurface, alluvium in the district varies from 115 m to 450 m. In Hindon Yamuna doab, the thickness of quaternary sediments including alluvial deposit varies from 300 m the north to 115 m in the central part of the Western side of Hindon river. The lithological variation in Loni Block is given in Table 1

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Depth Range (m)</th>
<th>Thickness (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine sand, sandy silt, grey coloured</td>
<td>0.00 - 9.00</td>
<td>6.50</td>
</tr>
<tr>
<td>Sand, medium, grey coloured with molluscs and fragments of minerals</td>
<td>25.00 - 30.50</td>
<td>1.00</td>
</tr>
<tr>
<td>Sand, fine, very fine, grey coloured with 10% clayey silt, angular to sub-rounded</td>
<td>30.50 - 35.50</td>
<td>1.00</td>
</tr>
<tr>
<td>Mottled sandy clay with occasional gravel</td>
<td>35.50 - 40.50</td>
<td>0.30</td>
</tr>
<tr>
<td>Sand, fine, grey coloured</td>
<td>40.50 - 45.00</td>
<td>0.30</td>
</tr>
<tr>
<td>Sand, medium, sandy, grey coloured with molluscs and fragments of minerals</td>
<td>45.00 - 50.50</td>
<td>0.30</td>
</tr>
<tr>
<td>Clayey silt and gravel, grey coloured with minor amount of sand</td>
<td>50.50 - 55.00</td>
<td>0.50</td>
</tr>
<tr>
<td>Clayey silt and gravel, light grey</td>
<td>55.00 - 60.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Clayey silt and gravel, grey</td>
<td>60.50 - 65.00</td>
<td>0.50</td>
</tr>
<tr>
<td>Clayey silt and gravel, dark grey</td>
<td>65.00 - 70.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Clayey silt and gravel, dark grey</td>
<td>70.50 - 75.00</td>
<td>0.50</td>
</tr>
<tr>
<td>Clayey silt and gravel, very dark grey</td>
<td>75.00 - 80.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Clayey silt and gravel, dark grey</td>
<td>80.50 - 85.00</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Depth to Water Table

Table 1: Sub-surface lithology of Loni Block
The groundwater occurs under unconfined condition in shallow aquifers whereas it is under unconfined condition in the deeper aquifers more than 60m depths. In the post-monsoon period, depth to water level ranges between 1.70 m to 24.6 m bgl, in general the depth to water table varies between 10 and 15m bgl (Figure 1).

Water Level Fluctuation
Water level fluctuation data was analyzed for 10 years and it was observed that on an average the water level fluctuation during monsoon is 0.2125 m per year and during post monsoon it was 0.3016m per year (Figure 2). The continuous decline will result in water quality problems as the area is surrounded by saline groundwater.

Status of Groundwater exploration
In view of the water requirement to meet the domestic and industrial water requirement, CGWB carried out deep exploratory drilling, the data of which is presented in Table 2. It is evident from the results of the exploratory drilling that the bed rock is undulating and is observed at shallow depth of 104m in Ramprastha whereas in theRadha Kunj it is observed at the depth of more than 200 meter. Additional exploratory drilling is required to comprehend the rapid changes in lithology and chemical quality.

Groundwater Development Status
The groundwater development in the area being a continuous process, it was essential to know the status of groundwater development vis-a-vis the total recharge. CGWB, 2009 computed the groundwater recharge-discharge relationship and the stage of groundwater development for the unconfined aquifers, the following Table 3 gives the stage of groundwater development in Loni and Razapur block and also of the adjoining blocks of Muradnagar and Bhojpur.

The above dynamic resources are for the fresh water aquifers but it is equally important to estimate the potential of saline water aquifers for their conjunctive use with fresh water.

Geophysical Survey (Resistivity) for categorization of Aquifers
The resistivity survey is prelude to any exploration or construction of tube wells as it gives the information on the different aquifer zone and also water quality. Six deep resistivity survey was carried out to explore the depth upto 300 meter to comprehend the saline fresh interface and the different aquifer zone within the fresh water aquifer system. The data was interpreted using curve matching method and also inverse slope method.
The representative graph of both the methods is given in Figure 3.

![Graph](image)

The curve was showing KQ Type ($\rho_1 < \rho_2 > \rho_3 > \rho_4$) (Clay, Fresh Water Sand, Silty sand and Clay/sand with saline water)

![Curve](image)

The interpreted result show that the resistivity of the layer top soil ranges from 26.4-201 ohm-m and thickness is between 0.58-1.67 m. In the second layer, clay and sand was inferred with high resistivity values ranging from 9.14-257 ohm-m, this layer acts as the shallow aquifer in these places because this layer consists of fracture or weathered zone which constitutes an aquifer of very good quality of groundwater. The 3rd layer is the showing that saline water aquifers zone in the area of Ghaziabad.

Based on the interpretation of the resistivity survey data, resistivity pseudo section has been prepared (Figure 4) and the results are tabulated in Table 4.

![Table](image)

Table 4: Vertical Electrical Sounding Details of Ghaziabad Dist.

<table>
<thead>
<tr>
<th>No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Depth (m)</th>
<th>Lithology</th>
<th>Resistivity (ohm-m)</th>
<th>Groundwater Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28.651681°</td>
<td>77.454005°</td>
<td>Top soil</td>
<td>Fresh Water Sand</td>
<td>26.4 - 201</td>
<td>Suitable water</td>
</tr>
<tr>
<td>2</td>
<td>28.651681°</td>
<td>77.454005°</td>
<td>Clay/sand</td>
<td>Clay/sand with saline water</td>
<td>9.14 - 257</td>
<td>Fresh water</td>
</tr>
<tr>
<td>3</td>
<td>28.651681°</td>
<td>77.454005°</td>
<td>Middle</td>
<td>Clay/sand with saline water</td>
<td>28.4 - 35.2</td>
<td>Fresh water</td>
</tr>
<tr>
<td>4</td>
<td>28.651681°</td>
<td>77.454005°</td>
<td>3rd layer</td>
<td>Clay/sand with saline water</td>
<td>30.8 - 35.4</td>
<td>Suitable water</td>
</tr>
</tbody>
</table>

Panel Diagram

A panel diagram showing the distribution of lithological units with groundwater quality is given in Figure 5.

![Panel Diagram](image)
It is thus concluded that in the heterogeneous aquifer system variation in lithology and water quality can be ascertain by the application of resistivity survey. It is an important component to decide the potability of groundwater there being rapid changes in water quality both in the phreatic and semi confined aquifers, a number of samples were analyzed to study the variation in chemical quality. Based on the electrical conductivity values and Isoconductivity map has been prepared showing the areas under fresh and saline groundwater of the unconfined aquifers (Figure 6).

Figure 6: Isoconductivity Map of Ghaziabad

Recently, 14 water samples were collected from tubewell under operation to study the variation in chemical quality and their suitability for drinking and commercial purposes. The analysis are presented in table 5.

In the classification of groundwater quality, Chadha (1999) has been used. In this diagram the differences in millie equivalent percentage between alkaline earths (Ca+Mg)and alkali metals (Na +K),expressed as percentage reacting valued , are plotted on the X-axis , and the differences in millie equivalent percentage between weak acidic anions (CO3 +HCO3) and strong acidic anions (Cl+SO4) are plotted on the Y-axis. The mill equivalent percentage difference between alkaline earth and alkali metals and between weak acidic anions and strong acidic anions , would be plotted in one of the four possible subfields of the rectangular diagram. The rectangular
field describes the overall character of the water. In order to define primary character of the water, the rectangular field is divided into eight subfields, each of which represents a water type. Results of the chemical analysis are plotted on in the diagram below in figure 7.

Figure 7: Results of the chemical analysis are plotted on in the diagram

Geochemical classification and hydrochemical parameters of groundwater (after Chadha 1999).

1. Alkaline earths exceed alkali metals;
2. alkali metals exceeds alkaline earths;
3. weak acidic anions exceed strong acidic anions;
4. strong acidic anions exceed weak acidic anions;
5. Ca$^{2+}$—Mg$^{2+}$—HCO$_3^-$ water type with temporary hardness;
6. Ca$^{2+}$—Mg$^{2+}$—Cl$^-$ water type with permanent hardness;
7. Na$^+$—Cl$^-$ water type with salinity problems both in irrigation and domestic uses;
8. Na$^+$—HCO$_3^-$ water type causes foaming problems in domestic use.

Therefore, the groundwater quality can be categorized as belonging to Ca$^{2+}$—Mg$^{2+}$—HCO$_3^-$ water type with temporary hardness.

The cumulative values of Cations and Anions of 14 samples have been plotted in Figure 8. This cumulative value signifies the comparative assessment of the water quality.

Figure 8: Groundwater pollution model

Potential for Groundwater Recharge

The runoff potential has been computed by using the following formula.

Average run off potential= Area X Coefficient of Run off X Average Annual Rainfall

It is thud computed that the runoff potential of Loni Block and the Razapur block and the corresponding potential for ground water recharge is given below:

1. Potential of Artificial Recharge Structure of LONI BLOCK

Water available from roof top = Annual rainfall (in mm) X Area of roof (in sq.m) X Coefficient of runoff for the roof

Run off Potential= 275876400*0.905*0.25 = 62417035.5m3 = 62.41 MCM
Recharge potential= 70% of 62417035.5m3 = 43691924.85m3 = 43.69 MCM

2. Potential of Artificial Recharge Structure of ROZAPUR BLOCK

1832750*0.905*0.25 = 41465968.75 m3 = 41.46 MCM
Recharge potential= 70% of 41465968m3 = 29026178.12m3 = 29.02 MCM

Pilot Project for rainwater harvesting

In order to showcase the low cost recharge to groundwater technology, a pilot project was implemented in the campus of RKGIT, Ghaziabad. The groundwater recharge structure has been designed to take care of the suspended load in the run off water by installing inverted filters. The length of the recharge well is 2m below the water table and the slotted assembly is placed against the potential aquifer zones consisting of fine to coarse sand. From the roof top of two of the building is 1501 m3.

Potential of Artificial Recharge Structure at RKGIT College

= 568.20 mm X 3774.69 sq.m X 0.7
= 1501.345 m3 or 15,01,345.201 litres

The diagram of the pilot recharge structure is given in Figure 9. The injection techniques are used as an alternative to surface spreading operations usually where a zone with low permeability, within the unsaturated zone, impedes the recharge to a designated aquifer. A cased recharge well or bore is generally used to penetrate a zone with low permeability. The open or perforated section at the base of the well allows infiltration into either the aquifer or vadose zone.
Figure 9: Artificial Recharge to ground water project at RKGIT, Gaziabad

In order to ensure the sustainable water supply from groundwater it is essential to have a detailed aquifer management plan. Aquifer management plan pertains to possibility of future development of:

- Identification and development of deep aquifer fresh water zone wherever required.
- Rainwater harvesting as 71MCM of non committed monsoon water is available for water conservation and recharge.
- Utilization of surface water from canal system during monsoon when demand for surface water is substantially reduced.
- Conjunctive use: It is one of the best options to be exercised as there is quality variation and use of both the fresh groundwater and saline groundwater in reasonable proportion can be used and this will add to the availability of water resources.
- Utilization of saline groundwater: Although this potential is not assessed but the recent study indicate substantial potential is available which can be used by treating it with appropriate technology insitu or treating with the RO system. This will ensure water supply to the scattered habituation in the villages.
- In the urban scenario the domestic waste water will need to be treated for its secondary use and it should be made mandatory for any new infrastructure.

ACKNOWLEDGEMENT

The present study is supported by Department of Science and Technology (DST), Government of India, New Delhi, for the research project. We express our thanks to the research team of Global Hydrogeological Solutions especially to Dr. Raj Kumar, Research Fellow and Mr. Avinash Chandra, Research Fellow for their technical support in finalizing the paper.

REFERENCES

Central Groundwater Board, 2008-2009, Ground Water Brochure of Ghaziabad District, UP.

Central Groundwater Board, 2011-2012, Ground Water Year Book of North Region.

Central Groundwater Board, 2009, Dynamic Groundwater resources.

